Proof of Theorem u3lemaa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
| 2 | 1 | ran 78 |
. 2
((a →3 b) ∩ a) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a) |
| 3 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b) |
| 4 | 3 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b) |
| 5 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b⊥ ) |
| 6 | 5 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b⊥ ) |
| 7 | 4, 6 | com2or 483 |
. . . 4
a C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 8 | | comid 187 |
. . . . 5
a C a |
| 9 | | comorr 184 |
. . . . . 6
a⊥ C
(a⊥ ∪ b) |
| 10 | 9 | comcom6 459 |
. . . . 5
a C (a⊥ ∪ b) |
| 11 | 8, 10 | com2an 484 |
. . . 4
a C (a ∩ (a⊥ ∪ b)) |
| 12 | 7, 11 | fh1r 473 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∩ (a⊥ ∪ b)) ∩ a)) |
| 13 | 4, 6 | fh1r 473 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a) = (((a⊥ ∩ b) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) |
| 14 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a) =
(a ∩ (a⊥ ∩ b)) |
| 15 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
| 16 | 15 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ b) |
| 17 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b) = (b ∩
(a ∩ a⊥ )) |
| 18 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
| 19 | 18 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = 0 |
| 20 | 19 | lan 77 |
. . . . . . . . . . . 12
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
| 21 | | an0 108 |
. . . . . . . . . . . 12
(b ∩ 0) = 0 |
| 22 | 20, 21 | ax-r2 36 |
. . . . . . . . . . 11
(b ∩ (a ∩ a⊥ )) = 0 |
| 23 | 17, 22 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b) = 0 |
| 24 | 16, 23 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b)) = 0 |
| 25 | 14, 24 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a) =
0 |
| 26 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ a) = (a ∩
(a⊥ ∩ b⊥ )) |
| 27 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
| 28 | 27 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
| 29 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
| 30 | 19 | lan 77 |
. . . . . . . . . . . 12
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
| 31 | | an0 108 |
. . . . . . . . . . . 12
(b⊥ ∩ 0) =
0 |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
| 33 | 29, 32 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
| 34 | 28, 33 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
| 35 | 26, 34 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ a) = 0 |
| 36 | 25, 35 | 2or 72 |
. . . . . . 7
(((a⊥ ∩
b) ∩ a) ∪ ((a⊥ ∩ b⊥ ) ∩ a)) = (0 ∪ 0) |
| 37 | | or0 102 |
. . . . . . 7
(0 ∪ 0) = 0 |
| 38 | 36, 37 | ax-r2 36 |
. . . . . 6
(((a⊥ ∩
b) ∩ a) ∪ ((a⊥ ∩ b⊥ ) ∩ a)) = 0 |
| 39 | 13, 38 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a) = 0 |
| 40 | | an32 83 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∩ a) =
((a ∩ a) ∩ (a⊥ ∪ b)) |
| 41 | | anidm 111 |
. . . . . . 7
(a ∩ a) = a |
| 42 | 41 | ran 78 |
. . . . . 6
((a ∩ a) ∩ (a⊥ ∪ b)) = (a ∩
(a⊥ ∪ b)) |
| 43 | 40, 42 | ax-r2 36 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ a) =
(a ∩ (a⊥ ∪ b)) |
| 44 | 39, 43 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∩ (a⊥ ∪ b)) ∩ a)) =
(0 ∪ (a ∩ (a⊥ ∪ b))) |
| 45 | | ax-a2 31 |
. . . . 5
(0 ∪ (a ∩ (a⊥ ∪ b))) = ((a ∩
(a⊥ ∪ b)) ∪ 0) |
| 46 | | or0 102 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∪ 0) = (a ∩ (a⊥ ∪ b)) |
| 47 | 45, 46 | ax-r2 36 |
. . . 4
(0 ∪ (a ∩ (a⊥ ∪ b))) = (a ∩
(a⊥ ∪ b)) |
| 48 | 44, 47 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((a
∩ (a⊥ ∪ b)) ∩ a)) =
(a ∩ (a⊥ ∪ b)) |
| 49 | 12, 48 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a) =
(a ∩ (a⊥ ∪ b)) |
| 50 | 2, 49 | ax-r2 36 |
1
((a →3 b) ∩ a) =
(a ∩ (a⊥ ∪ b)) |