Proof of Theorem u4lemanb
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
2 | 1 | ran 78 |
. 2
((a →4 b) ∩ b⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ b⊥ ) |
3 | | comanr2 465 |
. . . . . 6
b C (a ∩ b) |
4 | 3 | comcom3 454 |
. . . . 5
b⊥ C
(a ∩ b) |
5 | | comanr2 465 |
. . . . . 6
b C (a⊥ ∩ b) |
6 | 5 | comcom3 454 |
. . . . 5
b⊥ C
(a⊥ ∩ b) |
7 | 4, 6 | com2or 483 |
. . . 4
b⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
8 | | comorr2 463 |
. . . . . 6
b C (a⊥ ∪ b) |
9 | 8 | comcom3 454 |
. . . . 5
b⊥ C
(a⊥ ∪ b) |
10 | | comid 187 |
. . . . 5
b⊥ C
b⊥ |
11 | 9, 10 | com2an 484 |
. . . 4
b⊥ C
((a⊥ ∪ b) ∩ b⊥ ) |
12 | 7, 11 | fh1r 473 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ b⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ ) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ b⊥ )) |
13 | | ax-a2 31 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ b⊥ )) = ((((a⊥ ∪ b) ∩ b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) |
14 | | anass 76 |
. . . . . . 7
(((a⊥ ∪
b) ∩ b⊥ ) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ (b⊥ ∩ b⊥ )) |
15 | | anidm 111 |
. . . . . . . 8
(b⊥ ∩ b⊥ ) = b⊥ |
16 | 15 | lan 77 |
. . . . . . 7
((a⊥ ∪ b) ∩ (b⊥ ∩ b⊥ )) = ((a⊥ ∪ b) ∩ b⊥ ) |
17 | 14, 16 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b) ∩ b⊥ ) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) |
18 | 4, 6 | fh1r 473 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) = (((a ∩ b) ∩
b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) |
19 | | anass 76 |
. . . . . . . . . 10
((a ∩ b) ∩ b⊥ ) = (a ∩ (b ∩
b⊥ )) |
20 | | dff 101 |
. . . . . . . . . . . . 13
0 = (b ∩ b⊥ ) |
21 | 20 | lan 77 |
. . . . . . . . . . . 12
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
22 | 21 | ax-r1 35 |
. . . . . . . . . . 11
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
23 | | an0 108 |
. . . . . . . . . . 11
(a ∩ 0) = 0 |
24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
(a ∩ (b ∩ b⊥ )) = 0 |
25 | 19, 24 | ax-r2 36 |
. . . . . . . . 9
((a ∩ b) ∩ b⊥ ) = 0 |
26 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b) ∩ b⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
27 | 20 | lan 77 |
. . . . . . . . . . . 12
(a⊥ ∩ 0) =
(a⊥ ∩ (b ∩ b⊥ )) |
28 | 27 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
29 | | an0 108 |
. . . . . . . . . . 11
(a⊥ ∩ 0) =
0 |
30 | 28, 29 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
31 | 26, 30 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ b⊥ ) = 0 |
32 | 25, 31 | 2or 72 |
. . . . . . . 8
(((a ∩ b) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = (0 ∪
0) |
33 | | or0 102 |
. . . . . . . 8
(0 ∪ 0) = 0 |
34 | 32, 33 | ax-r2 36 |
. . . . . . 7
(((a ∩ b) ∩ b⊥ ) ∪ ((a⊥ ∩ b) ∩ b⊥ )) = 0 |
35 | 18, 34 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) = 0 |
36 | 17, 35 | 2or 72 |
. . . . 5
((((a⊥ ∪
b) ∩ b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) = (((a⊥ ∪ b) ∩ b⊥ ) ∪ 0) |
37 | | or0 102 |
. . . . 5
(((a⊥ ∪
b) ∩ b⊥ ) ∪ 0) = ((a⊥ ∪ b) ∩ b⊥ ) |
38 | 36, 37 | ax-r2 36 |
. . . 4
((((a⊥ ∪
b) ∩ b⊥ ) ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ b⊥ )) = ((a⊥ ∪ b) ∩ b⊥ ) |
39 | 13, 38 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ b⊥ ) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ b⊥ )) = ((a⊥ ∪ b) ∩ b⊥ ) |
40 | 12, 39 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) |
41 | 2, 40 | ax-r2 36 |
1
((a →4 b) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) |