Proof of Theorem u4lem2
Step | Hyp | Ref
| Expression |
1 | | u4lemc1 683 |
. . . 4
a C ((a →4 b) →4 a) |
2 | 1 | comcom 453 |
. . 3
((a →4 b) →4 a) C a |
3 | 2 | u4lemc4 704 |
. 2
(((a →4 b) →4 a) →4 a) = (((a
→4 b) →4
a)⊥ ∪ a) |
4 | | u4lem1n 742 |
. . . 4
((a →4 b) →4 a)⊥ = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
5 | 4 | ax-r5 38 |
. . 3
(((a →4 b) →4 a)⊥ ∪ a) = (((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) |
6 | | ax-a3 32 |
. . . 4
(((((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = ((((a⊥ ∪ b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a)) |
7 | | lear 161 |
. . . . . . 7
(((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ≤ a |
8 | | leor 159 |
. . . . . . 7
a ≤ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
9 | 7, 8 | letr 137 |
. . . . . 6
(((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ≤ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
10 | 9 | df-le2 131 |
. . . . 5
((((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a)) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
11 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
12 | 10, 11 | ax-r2 36 |
. . . 4
((((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
13 | 6, 12 | ax-r2 36 |
. . 3
(((((a⊥ ∪
b) ∩ (a⊥ ∪ b⊥ )) ∩ a) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
14 | 5, 13 | ax-r2 36 |
. 2
(((a →4 b) →4 a)⊥ ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
15 | 3, 14 | ax-r2 36 |
1
(((a →4 b) →4 a) →4 a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |