Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud1lem0a | GIF version |
Description: Introduce →1 to the left. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud1lem0a.1 | a = b |
Ref | Expression |
---|---|
ud1lem0a | (c →1 a) = (c →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud1lem0a.1 | . . . 4 a = b | |
2 | 1 | lan 77 | . . 3 (c ∩ a) = (c ∩ b) |
3 | 2 | lor 70 | . 2 (c⊥ ∪ (c ∩ a)) = (c⊥ ∪ (c ∩ b)) |
4 | df-i1 44 | . 2 (c →1 a) = (c⊥ ∪ (c ∩ a)) | |
5 | df-i1 44 | . 2 (c →1 b) = (c⊥ ∪ (c ∩ b)) | |
6 | 3, 4, 5 | 3tr1 63 | 1 (c →1 a) = (c →1 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 |
This theorem is referenced by: ud1lem0ab 257 wql1 293 nom42 327 ud1 595 u3lem13b 790 2oai1u 822 1oaiii 823 oa3to4lem1 945 oa3to4lem2 946 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 |
Copyright terms: Public domain | W3C validator |