Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud1 | GIF version |
Description: Unified disjunction for Sasaki implication. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud1 | (a ∪ b) = ((a →1 b) →1 (((a →1 b) →1 (b →1 a)) →1 a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud1lem1 560 | . . . . . 6 ((a →1 b) →1 (b →1 a)) = (a ∪ (a⊥ ∩ b⊥ )) | |
2 | 1 | ud1lem0b 256 | . . . . 5 (((a →1 b) →1 (b →1 a)) →1 a) = ((a ∪ (a⊥ ∩ b⊥ )) →1 a) |
3 | ud1lem2 561 | . . . . 5 ((a ∪ (a⊥ ∩ b⊥ )) →1 a) = (a ∪ b) | |
4 | 2, 3 | ax-r2 36 | . . . 4 (((a →1 b) →1 (b →1 a)) →1 a) = (a ∪ b) |
5 | 4 | ud1lem0a 255 | . . 3 ((a →1 b) →1 (((a →1 b) →1 (b →1 a)) →1 a)) = ((a →1 b) →1 (a ∪ b)) |
6 | ud1lem3 562 | . . 3 ((a →1 b) →1 (a ∪ b)) = (a ∪ b) | |
7 | 5, 6 | ax-r2 36 | . 2 ((a →1 b) →1 (((a →1 b) →1 (b →1 a)) →1 a)) = (a ∪ b) |
8 | 7 | ax-r1 35 | 1 (a ∪ b) = ((a →1 b) →1 (((a →1 b) →1 (b →1 a)) →1 a)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |