Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud3lem3a | GIF version |
Description: Lemma for unified disjunction. (Contributed by NM, 27-Nov-1997.) |
Ref | Expression |
---|---|
ud3lem3a | ((a →3 b)⊥ ∩ (a ∪ b)) = (a →3 b)⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud3lem0c 279 | . . 3 (a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b)) ∩ (a⊥ ∪ (a ∩ b⊥ ))) | |
2 | lea 160 | . . . 4 (((a ∪ b⊥ ) ∩ (a ∪ b)) ∩ (a⊥ ∪ (a ∩ b⊥ ))) ≤ ((a ∪ b⊥ ) ∩ (a ∪ b)) | |
3 | lear 161 | . . . 4 ((a ∪ b⊥ ) ∩ (a ∪ b)) ≤ (a ∪ b) | |
4 | 2, 3 | letr 137 | . . 3 (((a ∪ b⊥ ) ∩ (a ∪ b)) ∩ (a⊥ ∪ (a ∩ b⊥ ))) ≤ (a ∪ b) |
5 | 1, 4 | bltr 138 | . 2 (a →3 b)⊥ ≤ (a ∪ b) |
6 | 5 | df2le2 136 | 1 ((a →3 b)⊥ ∩ (a ∪ b)) = (a →3 b)⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: ud3lem3 576 |
Copyright terms: Public domain | W3C validator |