Proof of Theorem ud3lem3
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. 2
((a →3 b) →3 (a ∪ b)) =
((((a →3 b)⊥ ∩ (a ∪ b))
∪ ((a →3 b)⊥ ∩ (a ∪ b)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b)))) |
2 | | ud3lem3a 572 |
. . . . . . 7
((a →3 b)⊥ ∩ (a ∪ b)) =
(a →3 b)⊥ |
3 | | ud3lem0c 279 |
. . . . . . 7
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
4 | 2, 3 | ax-r2 36 |
. . . . . 6
((a →3 b)⊥ ∩ (a ∪ b)) =
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
5 | | ud3lem3b 573 |
. . . . . 6
((a →3 b)⊥ ∩ (a ∪ b)⊥ ) = 0 |
6 | 4, 5 | 2or 72 |
. . . . 5
(((a →3 b)⊥ ∩ (a ∪ b))
∪ ((a →3 b)⊥ ∩ (a ∪ b)⊥ )) = ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ 0) |
7 | | or0 102 |
. . . . 5
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ 0) = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
8 | 6, 7 | ax-r2 36 |
. . . 4
(((a →3 b)⊥ ∩ (a ∪ b))
∪ ((a →3 b)⊥ ∩ (a ∪ b)⊥ )) = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
9 | | ud3lem3d 575 |
. . . 4
((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b))) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
10 | 8, 9 | 2or 72 |
. . 3
((((a →3 b)⊥ ∩ (a ∪ b))
∪ ((a →3 b)⊥ ∩ (a ∪ b)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b)))) = ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
11 | | coman1 185 |
. . . . . . . . . 10
(a⊥ ∩ b) C a⊥ |
12 | 11 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b) C a |
13 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b) C b |
14 | 13 | comcom2 183 |
. . . . . . . . 9
(a⊥ ∩ b) C b⊥ |
15 | 12, 14 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b) C (a
∪ b⊥
) |
16 | 12, 13 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b) C (a
∪ b) |
17 | 15, 16 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C ((a
∪ b⊥ ) ∩ (a ∪ b)) |
18 | 17 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a⊥ ∩ b) |
19 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b⊥ ) |
20 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b) |
21 | 19, 20 | com2an 484 |
. . . . . . . 8
a C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
22 | 21 | comcom 453 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b)) C
a |
23 | | comor1 461 |
. . . . . . . . . . 11
(a⊥ ∪ b) C a⊥ |
24 | 23 | comcom7 460 |
. . . . . . . . . 10
(a⊥ ∪ b) C a |
25 | | comor2 462 |
. . . . . . . . . . 11
(a⊥ ∪ b) C b |
26 | 25 | comcom2 183 |
. . . . . . . . . 10
(a⊥ ∪ b) C b⊥ |
27 | 24, 26 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b) C (a
∪ b⊥
) |
28 | 24, 25 | com2or 483 |
. . . . . . . . 9
(a⊥ ∪ b) C (a
∪ b) |
29 | 27, 28 | com2an 484 |
. . . . . . . 8
(a⊥ ∪ b) C ((a
∪ b⊥ ) ∩ (a ∪ b)) |
30 | 29 | comcom 453 |
. . . . . . 7
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a⊥ ∪ b) |
31 | 22, 30 | com2an 484 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a ∩ (a⊥ ∪ b)) |
32 | 18, 31 | com2or 483 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
33 | 19 | comcom3 454 |
. . . . . . . 8
a⊥ C
(a ∪ b⊥ ) |
34 | 20 | comcom3 454 |
. . . . . . . 8
a⊥ C
(a ∪ b) |
35 | 33, 34 | com2an 484 |
. . . . . . 7
a⊥ C
((a ∪ b⊥ ) ∩ (a ∪ b)) |
36 | 35 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
a⊥ |
37 | | coman1 185 |
. . . . . . . . 9
(a ∩ b⊥ ) C a |
38 | | coman2 186 |
. . . . . . . . 9
(a ∩ b⊥ ) C b⊥ |
39 | 37, 38 | com2or 483 |
. . . . . . . 8
(a ∩ b⊥ ) C (a ∪ b⊥ ) |
40 | 38 | comcom7 460 |
. . . . . . . . 9
(a ∩ b⊥ ) C b |
41 | 37, 40 | com2or 483 |
. . . . . . . 8
(a ∩ b⊥ ) C (a ∪ b) |
42 | 39, 41 | com2an 484 |
. . . . . . 7
(a ∩ b⊥ ) C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
43 | 42 | comcom 453 |
. . . . . 6
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a ∩ b⊥ ) |
44 | 36, 43 | com2or 483 |
. . . . 5
((a ∪ b⊥ ) ∩ (a ∪ b)) C
(a⊥ ∪ (a ∩ b⊥ )) |
45 | 32, 44 | fh4r 476 |
. . . 4
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = ((((a
∪ b⊥ ) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) |
46 | | comor1 461 |
. . . . . . . . . . 11
(a ∪ b⊥ ) C a |
47 | 46 | comcom2 183 |
. . . . . . . . . 10
(a ∪ b⊥ ) C a⊥ |
48 | | comor2 462 |
. . . . . . . . . . 11
(a ∪ b⊥ ) C b⊥ |
49 | 48 | comcom7 460 |
. . . . . . . . . 10
(a ∪ b⊥ ) C b |
50 | 47, 49 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (a⊥ ∩ b) |
51 | 47, 49 | com2or 483 |
. . . . . . . . . 10
(a ∪ b⊥ ) C (a⊥ ∪ b) |
52 | 46, 51 | com2an 484 |
. . . . . . . . 9
(a ∪ b⊥ ) C (a ∩ (a⊥ ∪ b)) |
53 | 50, 52 | com2or 483 |
. . . . . . . 8
(a ∪ b⊥ ) C ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
54 | 46, 49 | com2or 483 |
. . . . . . . 8
(a ∪ b⊥ ) C (a ∪ b) |
55 | 53, 54 | fh4r 476 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((a
∪ b⊥ ) ∪
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a
∪ b) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) |
56 | | ax-a3 32 |
. . . . . . . . . . 11
(((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b))) = ((a ∪
b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) |
57 | 56 | ax-r1 35 |
. . . . . . . . . 10
((a ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((a
∪ b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b))) |
58 | | anor2 89 |
. . . . . . . . . . . . . 14
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
59 | 58 | lor 70 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) = ((a ∪
b⊥ ) ∪ (a ∪ b⊥ )⊥
) |
60 | | df-t 41 |
. . . . . . . . . . . . . 14
1 = ((a ∪ b⊥ ) ∪ (a ∪ b⊥ )⊥
) |
61 | 60 | ax-r1 35 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∪ (a ∪ b⊥ )⊥ ) =
1 |
62 | 59, 61 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) = 1 |
63 | 62 | ax-r5 38 |
. . . . . . . . . . 11
(((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b))) = (1 ∪ (a ∩ (a⊥ ∪ b))) |
64 | | or1r 105 |
. . . . . . . . . . 11
(1 ∪ (a ∩ (a⊥ ∪ b))) = 1 |
65 | 63, 64 | ax-r2 36 |
. . . . . . . . . 10
(((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b))) = 1 |
66 | 57, 65 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = 1 |
67 | | ax-a2 31 |
. . . . . . . . . 10
((a ∪ b) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ∪ (a
∪ b)) |
68 | | lear 161 |
. . . . . . . . . . . . 13
(a⊥ ∩ b) ≤ b |
69 | | leor 159 |
. . . . . . . . . . . . 13
b ≤ (a ∪ b) |
70 | 68, 69 | letr 137 |
. . . . . . . . . . . 12
(a⊥ ∩ b) ≤ (a ∪
b) |
71 | | lea 160 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∪ b)) ≤ a |
72 | | leo 158 |
. . . . . . . . . . . . 13
a ≤ (a ∪ b) |
73 | 71, 72 | letr 137 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) ≤ (a
∪ b) |
74 | 70, 73 | lel2or 170 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) ≤ (a
∪ b) |
75 | 74 | df-le2 131 |
. . . . . . . . . 10
(((a⊥ ∩
b) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a
∪ b)) = (a ∪ b) |
76 | 67, 75 | ax-r2 36 |
. . . . . . . . 9
((a ∪ b) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (a ∪
b) |
77 | 66, 76 | 2an 79 |
. . . . . . . 8
(((a ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a
∪ b) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) = (1 ∩ (a ∪ b)) |
78 | | an1r 107 |
. . . . . . . 8
(1 ∩ (a ∪ b)) = (a ∪
b) |
79 | 77, 78 | ax-r2 36 |
. . . . . . 7
(((a ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a
∪ b) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) = (a
∪ b) |
80 | 55, 79 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (a ∪
b) |
81 | | or12 80 |
. . . . . . 7
((a⊥ ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
82 | | df-a 40 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∪ b)) = (a⊥ ∪ (a⊥ ∪ b)⊥
)⊥ |
83 | | anor1 88 |
. . . . . . . . . . . . . . 15
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
84 | 83 | ax-r1 35 |
. . . . . . . . . . . . . 14
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
85 | 84 | lor 70 |
. . . . . . . . . . . . 13
(a⊥ ∪ (a⊥ ∪ b)⊥ ) = (a⊥ ∪ (a ∩ b⊥ )) |
86 | 85 | ax-r4 37 |
. . . . . . . . . . . 12
(a⊥ ∪ (a⊥ ∪ b)⊥ )⊥ = (a⊥ ∪ (a ∩ b⊥
))⊥ |
87 | 82, 86 | ax-r2 36 |
. . . . . . . . . . 11
(a ∩ (a⊥ ∪ b)) = (a⊥ ∪ (a ∩ b⊥
))⊥ |
88 | 87 | lor 70 |
. . . . . . . . . 10
((a⊥ ∪
(a ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∪ (a ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b⊥ ))⊥
) |
89 | | df-t 41 |
. . . . . . . . . . 11
1 = ((a⊥ ∪
(a ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b⊥ ))⊥
) |
90 | 89 | ax-r1 35 |
. . . . . . . . . 10
((a⊥ ∪
(a ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b⊥ ))⊥ ) =
1 |
91 | 88, 90 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = 1 |
92 | 91 | lor 70 |
. . . . . . . 8
((a⊥ ∩ b) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b) ∪ 1) |
93 | | or1 104 |
. . . . . . . 8
((a⊥ ∩ b) ∪ 1) = 1 |
94 | 92, 93 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b) ∪ ((a⊥ ∪ (a ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = 1 |
95 | 81, 94 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = 1 |
96 | 80, 95 | 2an 79 |
. . . . 5
((((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) = ((a
∪ b) ∩ 1) |
97 | | an1 106 |
. . . . 5
((a ∪ b) ∩ 1) = (a
∪ b) |
98 | 96, 97 | ax-r2 36 |
. . . 4
((((a ∪ b⊥ ) ∩ (a ∪ b))
∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) ∩ ((a⊥ ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))))) = (a
∪ b) |
99 | 45, 98 | ax-r2 36 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b)))) = (a ∪
b) |
100 | 10, 99 | ax-r2 36 |
. 2
((((a →3 b)⊥ ∩ (a ∪ b))
∪ ((a →3 b)⊥ ∩ (a ∪ b)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b)))) = (a ∪
b) |
101 | 1, 100 | ax-r2 36 |
1
((a →3 b) →3 (a ∪ b)) =
(a ∪ b) |