QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud3lem0c GIF version

Theorem ud3lem0c 279
Description: Lemma for unified disjunction. (Contributed by NM, 22-Nov-1997.)
Assertion
Ref Expression
ud3lem0c (a3 b) = (((ab ) ∩ (ab)) ∩ (a ∪ (ab )))

Proof of Theorem ud3lem0c
StepHypRef Expression
1 ni31 250 1 (a3 b) = (((ab ) ∩ (ab)) ∩ (a ∪ (ab )))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i3 46
This theorem is referenced by:  ud3lem1a  566  ud3lem1b  567  ud3lem1c  568  ud3lem3a  572  ud3lem3b  573  ud3lem3c  574  ud3lem3  576  u3lem14mp  794
  Copyright terms: Public domain W3C validator