Proof of Theorem ud3lem3c
Step | Hyp | Ref
| Expression |
1 | | ud3lem0c 279 |
. . . 4
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
2 | | an32 83 |
. . . . 5
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) = (((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (a ∪ b)) |
3 | | ancom 74 |
. . . . 5
(((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (a ∪ b)) =
((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) |
4 | 2, 3 | ax-r2 36 |
. . . 4
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) = ((a ∪ b) ∩
((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) |
5 | 1, 4 | ax-r2 36 |
. . 3
(a →3 b)⊥ = ((a ∪ b) ∩
((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) |
6 | 5 | ax-r5 38 |
. 2
((a →3 b)⊥ ∪ (a ∪ b)) =
(((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) ∪ (a ∪ b)) |
7 | | ax-a2 31 |
. . 3
(((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) ∪ (a ∪ b)) =
((a ∪ b) ∪ ((a
∪ b) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))))) |
8 | | orabs 120 |
. . 3
((a ∪ b) ∪ ((a
∪ b) ∩ ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))))) = (a ∪ b) |
9 | 7, 8 | ax-r2 36 |
. 2
(((a ∪ b) ∩ ((a
∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) ∪ (a ∪ b)) =
(a ∪ b) |
10 | 6, 9 | ax-r2 36 |
1
((a →3 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |