Proof of Theorem ud3lem3d
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | | ud3lem3c 574 |
. . 3
((a →3 b)⊥ ∪ (a ∪ b)) =
(a ∪ b) |
3 | 1, 2 | 2an 79 |
. 2
((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b))) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b)) |
4 | | comor1 461 |
. . . . . . 7
(a ∪ b) C a |
5 | 4 | comcom2 183 |
. . . . . 6
(a ∪ b) C a⊥ |
6 | | comor2 462 |
. . . . . 6
(a ∪ b) C b |
7 | 5, 6 | com2an 484 |
. . . . 5
(a ∪ b) C (a⊥ ∩ b) |
8 | 6 | comcom2 183 |
. . . . . 6
(a ∪ b) C b⊥ |
9 | 5, 8 | com2an 484 |
. . . . 5
(a ∪ b) C (a⊥ ∩ b⊥ ) |
10 | 7, 9 | com2or 483 |
. . . 4
(a ∪ b) C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
11 | 5, 6 | com2or 483 |
. . . . 5
(a ∪ b) C (a⊥ ∪ b) |
12 | 4, 11 | com2an 484 |
. . . 4
(a ∪ b) C (a
∩ (a⊥ ∪ b)) |
13 | 10, 12 | fh1r 473 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b)) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b))
∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) |
14 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b) C a⊥ |
15 | 14 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b) C a |
16 | | coman2 186 |
. . . . . . . 8
(a⊥ ∩ b) C b |
17 | 15, 16 | com2or 483 |
. . . . . . 7
(a⊥ ∩ b) C (a
∪ b) |
18 | 16 | comcom2 183 |
. . . . . . . 8
(a⊥ ∩ b) C b⊥ |
19 | 14, 18 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a⊥ ∩ b⊥ ) |
20 | 17, 19 | fh2r 474 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b)) =
(((a⊥ ∩ b) ∩ (a
∪ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) |
21 | | lear 161 |
. . . . . . . . . 10
(a⊥ ∩ b) ≤ b |
22 | | leor 159 |
. . . . . . . . . 10
b ≤ (a ∪ b) |
23 | 21, 22 | letr 137 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ (a ∪
b) |
24 | 23 | df2le2 136 |
. . . . . . . 8
((a⊥ ∩ b) ∩ (a
∪ b)) = (a⊥ ∩ b) |
25 | | oran 87 |
. . . . . . . . . 10
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
26 | 25 | lan 77 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
27 | | dff 101 |
. . . . . . . . . 10
0 = ((a⊥ ∩
b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥
) |
28 | 27 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )⊥ ) =
0 |
29 | 26, 28 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a ∪ b)) =
0 |
30 | 24, 29 | 2or 72 |
. . . . . . 7
(((a⊥ ∩
b) ∩ (a ∪ b))
∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) =
((a⊥ ∩ b) ∪ 0) |
31 | | or0 102 |
. . . . . . 7
((a⊥ ∩ b) ∪ 0) = (a⊥ ∩ b) |
32 | 30, 31 | ax-r2 36 |
. . . . . 6
(((a⊥ ∩
b) ∩ (a ∪ b))
∪ ((a⊥ ∩ b⊥ ) ∩ (a ∪ b))) =
(a⊥ ∩ b) |
33 | 20, 32 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b)) =
(a⊥ ∩ b) |
34 | 33 | ax-r5 38 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b))
∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) = ((a⊥ ∩ b) ∪ ((a
∩ (a⊥ ∪ b)) ∩ (a
∪ b))) |
35 | | lea 160 |
. . . . . . 7
(a ∩ (a⊥ ∪ b)) ≤ a |
36 | | leo 158 |
. . . . . . 7
a ≤ (a ∪ b) |
37 | 35, 36 | letr 137 |
. . . . . 6
(a ∩ (a⊥ ∪ b)) ≤ (a
∪ b) |
38 | 37 | df2le2 136 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b)) = (a ∩ (a⊥ ∪ b)) |
39 | 38 | lor 70 |
. . . 4
((a⊥ ∩ b) ∪ ((a
∩ (a⊥ ∪ b)) ∩ (a
∪ b))) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
40 | 34, 39 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ b))
∪ ((a ∩ (a⊥ ∪ b)) ∩ (a
∪ b))) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
41 | 13, 40 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ (a
∪ b)) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |
42 | 3, 41 | ax-r2 36 |
1
((a →3 b) ∩ ((a
→3 b)⊥
∪ (a ∪ b))) = ((a⊥ ∩ b) ∪ (a
∩ (a⊥ ∪ b))) |