Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wleo | GIF version |
Description: L.e. absorption. (Contributed by NM, 27-Sep-1997.) |
Ref | Expression |
---|---|
wleo | (a ≤2 (a ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wa5c 201 | . 2 ((a ∩ (a ∪ b)) ≡ a) = 1 | |
2 | 1 | wdf2le1 385 | 1 (a ≤2 (a ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: wledio 406 wcomorr 412 wlem14 430 ska4 433 |
Copyright terms: Public domain | W3C validator |