Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlecom | GIF version |
Description: Comparable elements commute. Beran 84 2.3(iii) p. 40. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wlecom.1 | (a ≤2 b) = 1 |
Ref | Expression |
---|---|
wlecom | C (a, b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orabs 120 | . . . . 5 (a ∪ (a ∩ b⊥ )) = a | |
2 | 1 | bi1 118 | . . . 4 ((a ∪ (a ∩ b⊥ )) ≡ a) = 1 |
3 | 2 | wr1 197 | . . 3 (a ≡ (a ∪ (a ∩ b⊥ ))) = 1 |
4 | wlecom.1 | . . . . . 6 (a ≤2 b) = 1 | |
5 | 4 | wdf2le2 386 | . . . . 5 ((a ∩ b) ≡ a) = 1 |
6 | 5 | wr1 197 | . . . 4 (a ≡ (a ∩ b)) = 1 |
7 | 6 | wr5-2v 366 | . . 3 ((a ∪ (a ∩ b⊥ )) ≡ ((a ∩ b) ∪ (a ∩ b⊥ ))) = 1 |
8 | 3, 7 | wr2 371 | . 2 (a ≡ ((a ∩ b) ∪ (a ∩ b⊥ ))) = 1 |
9 | 8 | wdf-c1 383 | 1 C (a, b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 ≤2 wle2 10 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wcomorr 412 wcoman1 413 wlem14 430 ska4 433 |
Copyright terms: Public domain | W3C validator |