Proof of Theorem wwfh3
| Step | Hyp | Ref
| Expression |
| 1 | | conb 122 |
. . 3
((a ∪ (b ∩ c))
≡ ((a ∪ b) ∩ (a
∪ c))) = ((a ∪ (b ∩
c))⊥ ≡ ((a ∪ b) ∩
(a ∪ c))⊥ ) |
| 2 | | oran 87 |
. . . . . 6
(a ∪ (b ∩ c)) =
(a⊥ ∩ (b ∩ c)⊥
)⊥ |
| 3 | | df-a 40 |
. . . . . . . . 9
(b ∩ c) = (b⊥ ∪ c⊥
)⊥ |
| 4 | 3 | con2 67 |
. . . . . . . 8
(b ∩ c)⊥ = (b⊥ ∪ c⊥ ) |
| 5 | 4 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b ∩ c)⊥ ) = (a⊥ ∩ (b⊥ ∪ c⊥ )) |
| 6 | 5 | ax-r4 37 |
. . . . . 6
(a⊥ ∩ (b ∩ c)⊥ )⊥ = (a⊥ ∩ (b⊥ ∪ c⊥
))⊥ |
| 7 | 2, 6 | ax-r2 36 |
. . . . 5
(a ∪ (b ∩ c)) =
(a⊥ ∩ (b⊥ ∪ c⊥
))⊥ |
| 8 | 7 | con2 67 |
. . . 4
(a ∪ (b ∩ c))⊥ = (a⊥ ∩ (b⊥ ∪ c⊥ )) |
| 9 | | df-a 40 |
. . . . . 6
((a ∪ b) ∩ (a
∪ c)) = ((a ∪ b)⊥ ∪ (a ∪ c)⊥
)⊥ |
| 10 | | oran 87 |
. . . . . . . . 9
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 11 | 10 | con2 67 |
. . . . . . . 8
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
| 12 | | oran 87 |
. . . . . . . . 9
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
| 13 | 12 | con2 67 |
. . . . . . . 8
(a ∪ c)⊥ = (a⊥ ∩ c⊥ ) |
| 14 | 11, 13 | 2or 72 |
. . . . . . 7
((a ∪ b)⊥ ∪ (a ∪ c)⊥ ) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) |
| 15 | 14 | ax-r4 37 |
. . . . . 6
((a ∪ b)⊥ ∪ (a ∪ c)⊥ )⊥ =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥
))⊥ |
| 16 | 9, 15 | ax-r2 36 |
. . . . 5
((a ∪ b) ∩ (a
∪ c)) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥
))⊥ |
| 17 | 16 | con2 67 |
. . . 4
((a ∪ b) ∩ (a
∪ c))⊥ = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) |
| 18 | 8, 17 | 2bi 99 |
. . 3
((a ∪ (b ∩ c))⊥ ≡ ((a ∪ b) ∩
(a ∪ c))⊥ ) = ((a⊥ ∩ (b⊥ ∪ c⊥ )) ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
| 19 | 1, 18 | ax-r2 36 |
. 2
((a ∪ (b ∩ c))
≡ ((a ∪ b) ∩ (a
∪ c))) = ((a⊥ ∩ (b⊥ ∪ c⊥ )) ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
| 20 | | wwfh3.1 |
. . . 4
b⊥ C
a |
| 21 | 20 | comcom2 183 |
. . 3
b⊥ C
a⊥ |
| 22 | | wwfh3.2 |
. . . 4
c⊥ C
a |
| 23 | 22 | comcom2 183 |
. . 3
c⊥ C
a⊥ |
| 24 | 21, 23 | wwfh1 216 |
. 2
((a⊥ ∩
(b⊥ ∪ c⊥ )) ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ ))) = 1 |
| 25 | 19, 24 | ax-r2 36 |
1
((a ∪ (b ∩ c))
≡ ((a ∪ b) ∩ (a
∪ c))) = 1 |