Proof of Theorem wwfh4
Step | Hyp | Ref
| Expression |
1 | | conb 122 |
. . 3
((b ∪ (a ∩ c))
≡ ((b ∪ a) ∩ (b
∪ c))) = ((b ∪ (a ∩
c))⊥ ≡ ((b ∪ a) ∩
(b ∪ c))⊥ ) |
2 | | oran 87 |
. . . . . 6
(b ∪ (a ∩ c)) =
(b⊥ ∩ (a ∩ c)⊥
)⊥ |
3 | | df-a 40 |
. . . . . . . . 9
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
4 | 3 | con2 67 |
. . . . . . . 8
(a ∩ c)⊥ = (a⊥ ∪ c⊥ ) |
5 | 4 | lan 77 |
. . . . . . 7
(b⊥ ∩ (a ∩ c)⊥ ) = (b⊥ ∩ (a⊥ ∪ c⊥ )) |
6 | 5 | ax-r4 37 |
. . . . . 6
(b⊥ ∩ (a ∩ c)⊥ )⊥ = (b⊥ ∩ (a⊥ ∪ c⊥
))⊥ |
7 | 2, 6 | ax-r2 36 |
. . . . 5
(b ∪ (a ∩ c)) =
(b⊥ ∩ (a⊥ ∪ c⊥
))⊥ |
8 | 7 | con2 67 |
. . . 4
(b ∪ (a ∩ c))⊥ = (b⊥ ∩ (a⊥ ∪ c⊥ )) |
9 | | df-a 40 |
. . . . . 6
((b ∪ a) ∩ (b
∪ c)) = ((b ∪ a)⊥ ∪ (b ∪ c)⊥
)⊥ |
10 | | oran 87 |
. . . . . . . . 9
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
11 | 10 | con2 67 |
. . . . . . . 8
(b ∪ a)⊥ = (b⊥ ∩ a⊥ ) |
12 | | oran 87 |
. . . . . . . . 9
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
13 | 12 | con2 67 |
. . . . . . . 8
(b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
14 | 11, 13 | 2or 72 |
. . . . . . 7
((b ∪ a)⊥ ∪ (b ∪ c)⊥ ) = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) |
15 | 14 | ax-r4 37 |
. . . . . 6
((b ∪ a)⊥ ∪ (b ∪ c)⊥ )⊥ =
((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥
))⊥ |
16 | 9, 15 | ax-r2 36 |
. . . . 5
((b ∪ a) ∩ (b
∪ c)) = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥
))⊥ |
17 | 16 | con2 67 |
. . . 4
((b ∪ a) ∩ (b
∪ c))⊥ = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) |
18 | 8, 17 | 2bi 99 |
. . 3
((b ∪ (a ∩ c))⊥ ≡ ((b ∪ a) ∩
(b ∪ c))⊥ ) = ((b⊥ ∩ (a⊥ ∪ c⊥ )) ≡ ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ ))) |
19 | 1, 18 | ax-r2 36 |
. 2
((b ∪ (a ∩ c))
≡ ((b ∪ a) ∩ (b
∪ c))) = ((b⊥ ∩ (a⊥ ∪ c⊥ )) ≡ ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ ))) |
20 | | wwfh4.1 |
. . . 4
a⊥ C
b |
21 | 20 | comcom2 183 |
. . 3
a⊥ C
b⊥ |
22 | | ax-a1 30 |
. . . . . 6
c = c⊥
⊥ |
23 | 22 | ax-r1 35 |
. . . . 5
c⊥
⊥ = c |
24 | | wwfh4.2 |
. . . . 5
c C a |
25 | 23, 24 | bctr 181 |
. . . 4
c⊥
⊥ C a |
26 | 25 | comcom2 183 |
. . 3
c⊥
⊥ C a⊥ |
27 | 21, 26 | wwfh2 217 |
. 2
((b⊥ ∩
(a⊥ ∪ c⊥ )) ≡ ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ ))) = 1 |
28 | 19, 27 | ax-r2 36 |
1
((b ∪ (a ∩ c))
≡ ((b ∪ a) ∩ (b
∪ c))) = 1 |