Proof of Theorem wwfh2
Step | Hyp | Ref
| Expression |
1 | | bicom 96 |
. 2
((b ∩ (a ∪ c))
≡ ((b ∩ a) ∪ (b
∩ c))) = (((b ∩ a) ∪
(b ∩ c)) ≡ (b
∩ (a ∪ c))) |
2 | | ledi 174 |
. . 3
((b ∩ a) ∪ (b
∩ c)) ≤ (b ∩ (a ∪
c)) |
3 | | oran 87 |
. . . . . . . . . . 11
((b ∩ a) ∪ (b
∩ c)) = ((b ∩ a)⊥ ∩ (b ∩ c)⊥
)⊥ |
4 | | df-a 40 |
. . . . . . . . . . . . . 14
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
5 | 4 | con2 67 |
. . . . . . . . . . . . 13
(b ∩ a)⊥ = (b⊥ ∪ a⊥ ) |
6 | 5 | ran 78 |
. . . . . . . . . . . 12
((b ∩ a)⊥ ∩ (b ∩ c)⊥ ) = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ ) |
7 | 6 | ax-r4 37 |
. . . . . . . . . . 11
((b ∩ a)⊥ ∩ (b ∩ c)⊥ )⊥ =
((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥
)⊥ |
8 | 3, 7 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ a) ∪ (b
∩ c)) = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥
)⊥ |
9 | 8 | con2 67 |
. . . . . . . . 9
((b ∩ a) ∪ (b
∩ c))⊥ = ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ ) |
10 | 9 | lan 77 |
. . . . . . . 8
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((b ∩ (a ∪
c)) ∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) |
11 | | an4 86 |
. . . . . . . . 9
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = ((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) |
12 | | ax-a1 30 |
. . . . . . . . . . . . . 14
a = a⊥
⊥ |
13 | 12 | ax-r1 35 |
. . . . . . . . . . . . 13
a⊥
⊥ = a |
14 | | wwfh2.1 |
. . . . . . . . . . . . 13
a C b |
15 | 13, 14 | bctr 181 |
. . . . . . . . . . . 12
a⊥
⊥ C b |
16 | 15 | wwcom3ii 215 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ a⊥ )) = (b ∩ a⊥ ) |
17 | | ancom 74 |
. . . . . . . . . . 11
(b ∩ a⊥ ) = (a⊥ ∩ b) |
18 | 16, 17 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ a⊥ )) = (a⊥ ∩ b) |
19 | 18 | ran 78 |
. . . . . . . . 9
((b ∩ (b⊥ ∪ a⊥ )) ∩ ((a ∪ c) ∩
(b ∩ c)⊥ )) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
20 | 11, 19 | ax-r2 36 |
. . . . . . . 8
((b ∩ (a ∪ c))
∩ ((b⊥ ∪ a⊥ ) ∩ (b ∩ c)⊥ )) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
21 | 10, 20 | ax-r2 36 |
. . . . . . 7
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) |
22 | | an4 86 |
. . . . . . 7
((a⊥ ∩ b) ∩ ((a
∪ c) ∩ (b ∩ c)⊥ )) = ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ )) |
23 | 21, 22 | ax-r2 36 |
. . . . . 6
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ (a ∪ c))
∩ (b ∩ (b ∩ c)⊥ )) |
24 | 12 | ax-r5 38 |
. . . . . . . . 9
(a ∪ c) = (a⊥ ⊥ ∪
c) |
25 | 24 | lan 77 |
. . . . . . . 8
(a⊥ ∩ (a ∪ c)) =
(a⊥ ∩ (a⊥ ⊥ ∪
c)) |
26 | | wwfh2.2 |
. . . . . . . . . 10
c⊥ C
a |
27 | 26 | comcom2 183 |
. . . . . . . . 9
c⊥ C
a⊥ |
28 | 27 | wwcom3ii 215 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ⊥ ∪
c)) = (a⊥ ∩ c) |
29 | 25, 28 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (a ∪ c)) =
(a⊥ ∩ c) |
30 | 29 | ran 78 |
. . . . . 6
((a⊥ ∩
(a ∪ c)) ∩ (b
∩ (b ∩ c)⊥ )) = ((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) |
31 | 23, 30 | ax-r2 36 |
. . . . 5
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = ((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) |
32 | | anass 76 |
. . . . 5
((a⊥ ∩ c) ∩ (b
∩ (b ∩ c)⊥ )) = (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) |
33 | 31, 32 | ax-r2 36 |
. . . 4
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) = (a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) |
34 | | anass 76 |
. . . . . . . 8
((b ∩ c) ∩ (b
∩ c)⊥ ) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
35 | 34 | ax-r1 35 |
. . . . . . 7
(b ∩ (c ∩ (b ∩
c)⊥ )) = ((b ∩ c) ∩
(b ∩ c)⊥ ) |
36 | | an12 81 |
. . . . . . 7
(c ∩ (b ∩ (b ∩
c)⊥ )) = (b ∩ (c ∩
(b ∩ c)⊥ )) |
37 | | dff 101 |
. . . . . . 7
0 = ((b ∩ c) ∩ (b
∩ c)⊥
) |
38 | 35, 36, 37 | 3tr1 63 |
. . . . . 6
(c ∩ (b ∩ (b ∩
c)⊥ )) =
0 |
39 | 38 | lan 77 |
. . . . 5
(a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) = (a⊥ ∩ 0) |
40 | | an0 108 |
. . . . 5
(a⊥ ∩ 0) =
0 |
41 | 39, 40 | ax-r2 36 |
. . . 4
(a⊥ ∩ (c ∩ (b ∩
(b ∩ c)⊥ ))) = 0 |
42 | 33, 41 | ax-r2 36 |
. . 3
((b ∩ (a ∪ c))
∩ ((b ∩ a) ∪ (b
∩ c))⊥ ) =
0 |
43 | 2, 42 | wwoml3 213 |
. 2
(((b ∩ a) ∪ (b
∩ c)) ≡ (b ∩ (a ∪
c))) = 1 |
44 | 1, 43 | ax-r2 36 |
1
((b ∩ (a ∪ c))
≡ ((b ∩ a) ∪ (b
∩ c))) = 1 |