Proof of Theorem wwfh1
| Step | Hyp | Ref
| Expression |
| 1 | | bicom 96 |
. 2
((a ∩ (b ∪ c))
≡ ((a ∩ b) ∪ (a
∩ c))) = (((a ∩ b) ∪
(a ∩ c)) ≡ (a
∩ (b ∪ c))) |
| 2 | | ledi 174 |
. . 3
((a ∩ b) ∪ (a
∩ c)) ≤ (a ∩ (b ∪
c)) |
| 3 | | ancom 74 |
. . . . . 6
(a ∩ (b ∪ c)) =
((b ∪ c) ∩ a) |
| 4 | | df-a 40 |
. . . . . . . . 9
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 5 | | df-a 40 |
. . . . . . . . 9
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
| 6 | 4, 5 | 2or 72 |
. . . . . . . 8
((a ∩ b) ∪ (a
∩ c)) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
) |
| 7 | | df-a 40 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) = ((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ |
| 8 | 7 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥
)⊥ = ((a⊥
∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) |
| 9 | 8 | con3 68 |
. . . . . . . 8
((a⊥ ∪ b⊥ )⊥ ∪
(a⊥ ∪ c⊥ )⊥ ) =
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥
))⊥ |
| 10 | 6, 9 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ c)) = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥
))⊥ |
| 11 | 10 | con2 67 |
. . . . . 6
((a ∩ b) ∪ (a
∩ c))⊥ = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) |
| 12 | 3, 11 | 2an 79 |
. . . . 5
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) = (((b ∪ c) ∩
a) ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) |
| 13 | | anass 76 |
. . . . . . 7
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((b ∪ c) ∩
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) |
| 14 | | ax-a1 30 |
. . . . . . . . . . . . 13
b = b⊥
⊥ |
| 15 | 14 | ax-r1 35 |
. . . . . . . . . . . 12
b⊥
⊥ = b |
| 16 | | wwfh.1 |
. . . . . . . . . . . 12
b C a |
| 17 | 15, 16 | bctr 181 |
. . . . . . . . . . 11
b⊥
⊥ C a |
| 18 | 17 | wwcom3ii 215 |
. . . . . . . . . 10
(a ∩ (a⊥ ∪ b⊥ )) = (a ∩ b⊥ ) |
| 19 | | ax-a1 30 |
. . . . . . . . . . . . 13
c = c⊥
⊥ |
| 20 | 19 | ax-r1 35 |
. . . . . . . . . . . 12
c⊥
⊥ = c |
| 21 | | wwfh.2 |
. . . . . . . . . . . 12
c C a |
| 22 | 20, 21 | bctr 181 |
. . . . . . . . . . 11
c⊥
⊥ C a |
| 23 | 22 | wwcom3ii 215 |
. . . . . . . . . 10
(a ∩ (a⊥ ∪ c⊥ )) = (a ∩ c⊥ ) |
| 24 | 18, 23 | 2an 79 |
. . . . . . . . 9
((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ b⊥ ) ∩ (a ∩ c⊥ )) |
| 25 | | anandi 114 |
. . . . . . . . 9
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ (a⊥ ∪ b⊥ )) ∩ (a ∩ (a⊥ ∪ c⊥ ))) |
| 26 | | anandi 114 |
. . . . . . . . 9
(a ∩ (b⊥ ∩ c⊥ )) = ((a ∩ b⊥ ) ∩ (a ∩ c⊥ )) |
| 27 | 24, 25, 26 | 3tr1 63 |
. . . . . . . 8
(a ∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = (a ∩ (b⊥ ∩ c⊥ )) |
| 28 | 27 | lan 77 |
. . . . . . 7
((b ∪ c) ∩ (a
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )))) = ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ ))) |
| 29 | 13, 28 | ax-r2 36 |
. . . . . 6
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = ((b ∪ c) ∩
(a ∩ (b⊥ ∩ c⊥ ))) |
| 30 | | an12 81 |
. . . . . 6
((b ∪ c) ∩ (a
∩ (b⊥ ∩ c⊥ ))) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 31 | 29, 30 | ax-r2 36 |
. . . . 5
(((b ∪ c) ∩ a)
∩ ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ ))) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 32 | 12, 31 | ax-r2 36 |
. . . 4
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) = (a ∩ ((b
∪ c) ∩ (b⊥ ∩ c⊥ ))) |
| 33 | | oran 87 |
. . . . . . . . . 10
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 34 | 33 | ax-r1 35 |
. . . . . . . . 9
(b⊥ ∩ c⊥ )⊥ = (b ∪ c) |
| 35 | 34 | con3 68 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 36 | 35 | lan 77 |
. . . . . . 7
((b ∪ c) ∩ (b⊥ ∩ c⊥ )) = ((b ∪ c) ∩
(b ∪ c)⊥ ) |
| 37 | | dff 101 |
. . . . . . . 8
0 = ((b ∪ c) ∩ (b
∪ c)⊥
) |
| 38 | 37 | ax-r1 35 |
. . . . . . 7
((b ∪ c) ∩ (b
∪ c)⊥ ) =
0 |
| 39 | 36, 38 | ax-r2 36 |
. . . . . 6
((b ∪ c) ∩ (b⊥ ∩ c⊥ )) = 0 |
| 40 | 39 | lan 77 |
. . . . 5
(a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) = (a ∩ 0) |
| 41 | | an0 108 |
. . . . 5
(a ∩ 0) = 0 |
| 42 | 40, 41 | ax-r2 36 |
. . . 4
(a ∩ ((b ∪ c) ∩
(b⊥ ∩ c⊥ ))) = 0 |
| 43 | 32, 42 | ax-r2 36 |
. . 3
((a ∩ (b ∪ c))
∩ ((a ∩ b) ∪ (a
∩ c))⊥ ) =
0 |
| 44 | 2, 43 | wwoml3 213 |
. 2
(((a ∩ b) ∪ (a
∩ c)) ≡ (a ∩ (b ∪
c))) = 1 |
| 45 | 1, 44 | ax-r2 36 |
1
((a ∩ (b ∪ c))
≡ ((a ∩ b) ∪ (a
∩ c))) = 1 |