Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bctr | GIF version |
Description: Transitive inference. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
bctr.1 | a = b |
bctr.2 | b C c |
Ref | Expression |
---|---|
bctr | a C c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bctr.2 | . . . 4 b C c | |
2 | 1 | df-c2 133 | . . 3 b = ((b ∩ c) ∪ (b ∩ c⊥ )) |
3 | bctr.1 | . . 3 a = b | |
4 | 3 | ran 78 | . . . 4 (a ∩ c) = (b ∩ c) |
5 | 3 | ran 78 | . . . 4 (a ∩ c⊥ ) = (b ∩ c⊥ ) |
6 | 4, 5 | 2or 72 | . . 3 ((a ∩ c) ∪ (a ∩ c⊥ )) = ((b ∩ c) ∪ (b ∩ c⊥ )) |
7 | 2, 3, 6 | 3tr1 63 | . 2 a = ((a ∩ c) ∪ (a ∩ c⊥ )) |
8 | 7 | df-c1 132 | 1 a C c |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-c1 132 df-c2 133 |
This theorem is referenced by: coman2 186 wwfh1 216 wwfh2 217 wwfh4 219 comor2 462 gsth2 490 gstho 491 gt1 492 i3bi 496 oi3ai3 503 ud4lem3 585 comi12 707 u4lem4 759 3vcom 813 1oa 820 orbi 842 mlaconj4 844 comanblem1 870 oacom 1011 oacom3 1013 |
Copyright terms: Public domain | W3C validator |