ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd Unicode version

Theorem dvdslelemd 10155
Description: Lemma for dvdsle 10156. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1  |-  ( ph  ->  M  e.  ZZ )
dvdslelemd.2  |-  ( ph  ->  N  e.  NN )
dvdslelemd.3  |-  ( ph  ->  K  e.  ZZ )
dvdslelemd.lt  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
dvdslelemd  |-  ( ph  ->  ( K  x.  M
)  =/=  N )

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
2 0z 8313 . . . . 5  |-  0  e.  ZZ
3 zlelttric 8347 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  ->  ( K  <_  0  \/  0  <  K ) )
41, 2, 3sylancl 398 . . . 4  |-  ( ph  ->  ( K  <_  0  \/  0  <  K ) )
5 zgt0ge1 8360 . . . . . 6  |-  ( K  e.  ZZ  ->  (
0  <  K  <->  1  <_  K ) )
61, 5syl 14 . . . . 5  |-  ( ph  ->  ( 0  <  K  <->  1  <_  K ) )
76orbi2d 714 . . . 4  |-  ( ph  ->  ( ( K  <_ 
0  \/  0  < 
K )  <->  ( K  <_  0  \/  1  <_  K ) ) )
84, 7mpbid 139 . . 3  |-  ( ph  ->  ( K  <_  0  \/  1  <_  K ) )
91zred 8419 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
109adantr 265 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  RR )
11 dvdslelemd.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1211zred 8419 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
1312adantr 265 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  RR )
1410, 13remulcld 7115 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  e.  RR )
15 0red 7086 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  e.  RR )
16 dvdslelemd.2 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1716nnred 8003 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
1817adantr 265 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  N  e.  RR )
1910renegcld 7450 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  -u K  e.  RR )
209le0neg1d 7583 . . . . . . . . 9  |-  ( ph  ->  ( K  <_  0  <->  0  <_  -u K ) )
2120biimpa 284 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  -u K )
22 0red 7086 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
2316nngt0d 8033 . . . . . . . . . . 11  |-  ( ph  ->  0  <  N )
24 dvdslelemd.lt . . . . . . . . . . 11  |-  ( ph  ->  N  <  M )
2522, 17, 12, 23, 24lttrd 7201 . . . . . . . . . 10  |-  ( ph  ->  0  <  M )
2622, 12, 25ltled 7194 . . . . . . . . 9  |-  ( ph  ->  0  <_  M )
2726adantr 265 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  M )
2819, 13, 21, 27mulge0d 7686 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  (
-u K  x.  M
) )
2914le0neg1d 7583 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  -u ( K  x.  M )
) )
3010recnd 7113 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  CC )
3113recnd 7113 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  CC )
3230, 31mulneg1d 7480 . . . . . . . . 9  |-  ( (
ph  /\  K  <_  0 )  ->  ( -u K  x.  M )  =  -u ( K  x.  M
) )
3332breq2d 3804 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( 0  <_  ( -u K  x.  M )  <->  0  <_  -u ( K  x.  M
) ) )
3429, 33bitr4d 184 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  ( -u K  x.  M ) ) )
3528, 34mpbird 160 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <_  0
)
3623adantr 265 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  <  N )
3714, 15, 18, 35, 36lelttrd 7200 . . . . 5  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <  N
)
3837ex 112 . . . 4  |-  ( ph  ->  ( K  <_  0  ->  ( K  x.  M
)  <  N )
)
3917adantr 265 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  e.  RR )
4012adantr 265 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  e.  RR )
419adantr 265 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  K  e.  RR )
4241, 40remulcld 7115 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  ( K  x.  M )  e.  RR )
4324adantr 265 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  <  M )
4426adantr 265 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  0  <_  M )
45 simpr 107 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  1  <_  K )
4640, 41, 44, 45lemulge12d 7979 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4739, 40, 42, 43, 46ltletrd 7492 . . . . 5  |-  ( (
ph  /\  1  <_  K )  ->  N  <  ( K  x.  M ) )
4847ex 112 . . . 4  |-  ( ph  ->  ( 1  <_  K  ->  N  <  ( K  x.  M ) ) )
4938, 48orim12d 710 . . 3  |-  ( ph  ->  ( ( K  <_ 
0  \/  1  <_  K )  ->  (
( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
508, 49mpd 13 . 2  |-  ( ph  ->  ( ( K  x.  M )  <  N  \/  N  <  ( K  x.  M ) ) )
51 zq 8658 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
521, 51syl 14 . . . 4  |-  ( ph  ->  K  e.  QQ )
53 zq 8658 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5411, 53syl 14 . . . 4  |-  ( ph  ->  M  e.  QQ )
55 qmulcl 8669 . . . 4  |-  ( ( K  e.  QQ  /\  M  e.  QQ )  ->  ( K  x.  M
)  e.  QQ )
5652, 54, 55syl2anc 397 . . 3  |-  ( ph  ->  ( K  x.  M
)  e.  QQ )
57 nnq 8665 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
5816, 57syl 14 . . 3  |-  ( ph  ->  N  e.  QQ )
59 qlttri2 8673 . . 3  |-  ( ( ( K  x.  M
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6056, 58, 59syl2anc 397 . 2  |-  ( ph  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6150, 60mpbird 160 1  |-  ( ph  ->  ( K  x.  M
)  =/=  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    e. wcel 1409    =/= wne 2220   class class class wbr 3792  (class class class)co 5540   RRcr 6946   0cc0 6947   1c1 6948    x. cmul 6952    < clt 7119    <_ cle 7120   -ucneg 7246   NNcn 7990   ZZcz 8302   QQcq 8651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-n0 8240  df-z 8303  df-q 8652
This theorem is referenced by:  dvdsle  10156
  Copyright terms: Public domain W3C validator