ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efi4p Unicode version

Theorem efi4p 11424
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
efi4p  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
Distinct variable groups:    A, k, n   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 7715 . . . 4  |-  _i  e.  CC
2 mulcl 7747 . . . 4  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 420 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efi4p.1 . . . 4  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
54ef4p 11400 . . 3  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( ( _i  x.  A ) ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
63, 5syl 14 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( ( _i  x.  A ) ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
7 ax-1cn 7713 . . . . . 6  |-  1  e.  CC
8 addcl 7745 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
97, 3, 8sylancr 410 . . . . 5  |-  ( A  e.  CC  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
103sqcld 10422 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  e.  CC )
1110halfcld 8964 . . . . 5  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  e.  CC )
12 3nn0 8995 . . . . . . 7  |-  3  e.  NN0
13 expcl 10311 . . . . . . 7  |-  ( ( ( _i  x.  A
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( _i  x.  A ) ^ 3 )  e.  CC )
143, 12, 13sylancl 409 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  e.  CC )
15 6cn 8802 . . . . . . 7  |-  6  e.  CC
16 6re 8801 . . . . . . . 8  |-  6  e.  RR
17 6pos 8821 . . . . . . . 8  |-  0  <  6
1816, 17gt0ap0ii 8390 . . . . . . 7  |-  6 #  0
19 divclap 8438 . . . . . . 7  |-  ( ( ( ( _i  x.  A ) ^ 3 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
2015, 18, 19mp3an23 1307 . . . . . 6  |-  ( ( ( _i  x.  A
) ^ 3 )  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
2114, 20syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
229, 11, 21addassd 7788 . . . 4  |-  ( A  e.  CC  ->  (
( ( 1  +  ( _i  x.  A
) )  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( ( _i  x.  A ) ^ 2 )  / 
2 )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) ) ) )
237a1i 9 . . . . 5  |-  ( A  e.  CC  ->  1  e.  CC )
2423, 3, 11, 21add4d 7931 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  +  ( ( ( ( _i  x.  A ) ^ 2 )  /  2 )  +  ( ( ( _i  x.  A ) ^ 3 )  / 
6 ) ) )  =  ( ( 1  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( _i  x.  A )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) ) ) )
25 2nn0 8994 . . . . . . . . . . 11  |-  2  e.  NN0
26 mulexp 10332 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  2  e.  NN0 )  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
271, 25, 26mp3an13 1306 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
28 i2 10393 . . . . . . . . . . . 12  |-  ( _i
^ 2 )  = 
-u 1
2928oveq1i 5784 . . . . . . . . . . 11  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
3029a1i 9 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i ^ 2 )  x.  ( A ^ 2 ) )  =  ( -u 1  x.  ( A ^ 2 ) ) )
31 sqcl 10354 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
3231mulm1d 8172 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( -u 1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
3327, 30, 323eqtrd 2176 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  -u ( A ^
2 ) )
3433oveq1d 5789 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
35 2cn 8791 . . . . . . . . . 10  |-  2  e.  CC
36 2ap0 8813 . . . . . . . . . 10  |-  2 #  0
37 divnegap 8466 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
3835, 36, 37mp3an23 1307 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
3931, 38syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
4034, 39eqtr4d 2175 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  =  -u ( ( A ^ 2 )  / 
2 ) )
4140oveq2d 5790 . . . . . 6  |-  ( A  e.  CC  ->  (
1  +  ( ( ( _i  x.  A
) ^ 2 )  /  2 ) )  =  ( 1  + 
-u ( ( A ^ 2 )  / 
2 ) ) )
4231halfcld 8964 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
43 negsub 8010 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( A ^
2 )  /  2
)  e.  CC )  ->  ( 1  + 
-u ( ( A ^ 2 )  / 
2 ) )  =  ( 1  -  (
( A ^ 2 )  /  2 ) ) )
447, 42, 43sylancr 410 . . . . . 6  |-  ( A  e.  CC  ->  (
1  +  -u (
( A ^ 2 )  /  2 ) )  =  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )
4541, 44eqtrd 2172 . . . . 5  |-  ( A  e.  CC  ->  (
1  +  ( ( ( _i  x.  A
) ^ 2 )  /  2 ) )  =  ( 1  -  ( ( A ^
2 )  /  2
) ) )
46 mulexp 10332 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  3  e.  NN0 )  ->  (
( _i  x.  A
) ^ 3 )  =  ( ( _i
^ 3 )  x.  ( A ^ 3 ) ) )
471, 12, 46mp3an13 1306 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  =  ( ( _i
^ 3 )  x.  ( A ^ 3 ) ) )
48 i3 10394 . . . . . . . . . . 11  |-  ( _i
^ 3 )  = 
-u _i
4948oveq1i 5784 . . . . . . . . . 10  |-  ( ( _i ^ 3 )  x.  ( A ^
3 ) )  =  ( -u _i  x.  ( A ^ 3 ) )
5047, 49syl6eq 2188 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  =  ( -u _i  x.  ( A ^ 3 ) ) )
5150oveq1d 5789 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  =  ( ( -u _i  x.  ( A ^
3 ) )  / 
6 ) )
52 expcl 10311 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
5312, 52mpan2 421 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A ^ 3 )  e.  CC )
54 negicn 7963 . . . . . . . . . 10  |-  -u _i  e.  CC
5515, 18pm3.2i 270 . . . . . . . . . 10  |-  ( 6  e.  CC  /\  6 #  0 )
56 divassap 8450 . . . . . . . . . 10  |-  ( (
-u _i  e.  CC  /\  ( A ^ 3 )  e.  CC  /\  ( 6  e.  CC  /\  6 #  0 ) )  ->  ( ( -u _i  x.  ( A ^
3 ) )  / 
6 )  =  (
-u _i  x.  (
( A ^ 3 )  /  6 ) ) )
5754, 55, 56mp3an13 1306 . . . . . . . . 9  |-  ( ( A ^ 3 )  e.  CC  ->  (
( -u _i  x.  ( A ^ 3 ) )  /  6 )  =  ( -u _i  x.  ( ( A ^
3 )  /  6
) ) )
5853, 57syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( -u _i  x.  ( A ^ 3 ) )  /  6 )  =  ( -u _i  x.  ( ( A ^
3 )  /  6
) ) )
59 divclap 8438 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
6015, 18, 59mp3an23 1307 . . . . . . . . . 10  |-  ( ( A ^ 3 )  e.  CC  ->  (
( A ^ 3 )  /  6 )  e.  CC )
6153, 60syl 14 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 3 )  /  6 )  e.  CC )
62 mulneg12 8159 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( -u _i  x.  ( ( A ^
3 )  /  6
) )  =  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) )
631, 61, 62sylancr 410 . . . . . . . 8  |-  ( A  e.  CC  ->  ( -u _i  x.  ( ( A ^ 3 )  /  6 ) )  =  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) )
6451, 58, 633eqtrd 2176 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  =  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) )
6564oveq2d 5790 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) ) )
6661negcld 8060 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
( A ^ 3 )  /  6 )  e.  CC )
67 adddi 7752 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  -u (
( A ^ 3 )  /  6 )  e.  CC )  -> 
( _i  x.  ( A  +  -u ( ( A ^ 3 )  /  6 ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) ) )
681, 67mp3an1 1302 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( _i  x.  ( A  +  -u (
( A ^ 3 )  /  6 ) ) )  =  ( ( _i  x.  A
)  +  ( _i  x.  -u ( ( A ^ 3 )  / 
6 ) ) ) )
6966, 68mpdan 417 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( A  +  -u ( ( A ^ 3 )  / 
6 ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) ) )
70 negsub 8010 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( A  +  -u ( ( A ^
3 )  /  6
) )  =  ( A  -  ( ( A ^ 3 )  /  6 ) ) )
7161, 70mpdan 417 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  -u ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  6
) ) )
7271oveq2d 5790 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( A  +  -u ( ( A ^ 3 )  / 
6 ) ) )  =  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) )
7365, 69, 723eqtr2d 2178 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) )
7445, 73oveq12d 5792 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( _i  x.  A )  +  ( ( ( _i  x.  A ) ^ 3 )  / 
6 ) ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) ) )
7522, 24, 743eqtrd 2176 . . 3  |-  ( A  e.  CC  ->  (
( ( 1  +  ( _i  x.  A
) )  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) ) )
7675oveq1d 5789 . 2  |-  ( A  e.  CC  ->  (
( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^
2 )  /  2
) )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) )  =  ( ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
776, 76eqtrd 2172 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    - cmin 7933   -ucneg 7934   # cap 8343    / cdiv 8432   2c2 8771   3c3 8772   4c4 8773   6c6 8775   NN0cn0 8977   ZZ>=cuz 9326   ^cexp 10292   !cfa 10471   sum_csu 11122   expce 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354
This theorem is referenced by:  resin4p  11425  recos4p  11426
  Copyright terms: Public domain W3C validator