ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem Unicode version

Theorem exmidaclem 7064
Description: Lemma for exmidac 7065. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
exmidaclem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
exmidaclem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
exmidaclem  |-  (CHOICE  -> EXMID )
Distinct variable groups:    x, A    x, B    x, y
Allowed substitution hints:    A( y)    B( y)    C( x, y)

Proof of Theorem exmidaclem
Dummy variables  z  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> CHOICE
)
2 exmidaclem.c . . . . . 6  |-  C  =  { A ,  B }
3 exmidaclem.a . . . . . . . 8  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
4 pp0ex 4113 . . . . . . . . 9  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4072 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }  e.  _V
63, 5eqeltri 2212 . . . . . . 7  |-  A  e. 
_V
7 exmidaclem.b . . . . . . . 8  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
84rabex 4072 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  e.  _V
97, 8eqeltri 2212 . . . . . . 7  |-  B  e. 
_V
10 prexg 4133 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
116, 9, 10mp2an 422 . . . . . 6  |-  { A ,  B }  e.  _V
122, 11eqeltri 2212 . . . . 5  |-  C  e. 
_V
1312a1i 9 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  C  e.  _V )
14 simpr 109 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  C )
1514, 2eleqtrdi 2232 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  { A ,  B } )
16 elpri 3550 . . . . . 6  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
17 0ex 4055 . . . . . . . . . . 11  |-  (/)  e.  _V
1817prid1 3629 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqid 2139 . . . . . . . . . . 11  |-  (/)  =  (/)
2019orci 720 . . . . . . . . . 10  |-  ( (/)  =  (/)  \/  y  =  { (/) } )
21 eqeq1 2146 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2221orbi1d 780 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  y  =  { (/) } )  <->  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2322, 3elrab2 2843 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2418, 20, 23mpbir2an 926 . . . . . . . . 9  |-  (/)  e.  A
25 eleq2 2203 . . . . . . . . 9  |-  ( z  =  A  ->  ( (/) 
e.  z  <->  (/)  e.  A
) )
2624, 25mpbiri 167 . . . . . . . 8  |-  ( z  =  A  ->  (/)  e.  z )
27 elex2 2702 . . . . . . . 8  |-  ( (/)  e.  z  ->  E. w  w  e.  z )
2826, 27syl 14 . . . . . . 7  |-  ( z  =  A  ->  E. w  w  e.  z )
29 p0ex 4112 . . . . . . . . . . 11  |-  { (/) }  e.  _V
3029prid2 3630 . . . . . . . . . 10  |-  { (/) }  e.  { (/) ,  { (/)
} }
31 eqid 2139 . . . . . . . . . . 11  |-  { (/) }  =  { (/) }
3231orci 720 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
}  \/  y  =  { (/) } )
33 eqeq1 2146 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
3433orbi1d 780 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( { (/)
}  =  { (/) }  \/  y  =  { (/)
} ) ) )
3534, 7elrab2 2843 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  y  =  { (/) } ) ) )
3630, 32, 35mpbir2an 926 . . . . . . . . 9  |-  { (/) }  e.  B
37 eleq2 2203 . . . . . . . . 9  |-  ( z  =  B  ->  ( { (/) }  e.  z  <->  { (/) }  e.  B
) )
3836, 37mpbiri 167 . . . . . . . 8  |-  ( z  =  B  ->  { (/) }  e.  z )
39 elex2 2702 . . . . . . . 8  |-  ( {
(/) }  e.  z  ->  E. w  w  e.  z )
4038, 39syl 14 . . . . . . 7  |-  ( z  =  B  ->  E. w  w  e.  z )
4128, 40jaoi 705 . . . . . 6  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
4215, 16, 413syl 17 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  E. w  w  e.  z )
4342ralrimiva 2505 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  A. z  e.  C  E. w  w  e.  z )
441, 13, 43acfun 7063 . . 3  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  E. f ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )
45 0nep0 4089 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
4645neii 2310 . . . . . . . . 9  |-  -.  (/)  =  { (/)
}
47 simplr 519 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  A
)  =  (/) )
48 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  B
)  =  { (/) } )
4947, 48eqeq12d 2154 . . . . . . . . 9  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( ( f `  A )  =  ( f `  B )  <->  (/)  =  { (/) } ) )
5046, 49mtbiri 664 . . . . . . . 8  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
51 olc 700 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  (/)  \/  y  =  { (/) } ) )
5251ralrimivw 2506 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  y  =  { (/) } ) )
53 rabid2 2607 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }  <->  A. x  e.  { (/) ,  { (/) } }  ( x  =  (/)  \/  y  =  { (/)
} ) )
5452, 53sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) } )
5554, 3syl6eqr 2190 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  A )
56 olc 700 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  { (/) }  \/  y  =  { (/)
} ) )
5756ralrimivw 2506 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
58 rabid2 2607 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
5957, 58sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) } )
6059, 7syl6eqr 2190 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  B )
6155, 60eqtr3d 2174 . . . . . . . . 9  |-  ( y  =  { (/) }  ->  A  =  B )
6261fveq2d 5425 . . . . . . . 8  |-  ( y  =  { (/) }  ->  ( f `  A )  =  ( f `  B ) )
6350, 62nsyl 617 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  y  =  { (/)
} )
6463olcd 723 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
65 simpr 109 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
6665orcd 722 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
67 fveq2 5421 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
f `  z )  =  ( f `  B ) )
68 id 19 . . . . . . . . . . 11  |-  ( z  =  B  ->  z  =  B )
6967, 68eleq12d 2210 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( f `  z
)  e.  z  <->  ( f `  B )  e.  B
) )
70 simprr 521 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A. z  e.  C  ( f `  z
)  e.  z )
719prid2 3630 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
7271, 2eleqtrri 2215 . . . . . . . . . . 11  |-  B  e.  C
7372a1i 9 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  B  e.  C )
7469, 70, 73rspcdva 2794 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  B
)  e.  B )
75 eqeq1 2146 . . . . . . . . . . 11  |-  ( x  =  ( f `  B )  ->  (
x  =  { (/) }  <-> 
( f `  B
)  =  { (/) } ) )
7675orbi1d 780 . . . . . . . . . 10  |-  ( x  =  ( f `  B )  ->  (
( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( (
f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7776, 7elrab2 2843 . . . . . . . . 9  |-  ( ( f `  B )  e.  B  <->  ( (
f `  B )  e.  { (/) ,  { (/) } }  /\  ( ( f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7874, 77sylib 121 . . . . . . . 8  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  e.  { (/)
,  { (/) } }  /\  ( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) ) )
7978simprd 113 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8079adantr 274 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8164, 66, 80mpjaodan 787 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
82 df-dc 820 . . . . 5  |-  (DECID  y  =  { (/) }  <->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8381, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> DECID  y  =  { (/) } )
84 simpr 109 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
8584orcd 722 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8685, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  -> DECID 
y  =  { (/) } )
87 fveq2 5421 . . . . . . . 8  |-  ( z  =  A  ->  (
f `  z )  =  ( f `  A ) )
88 id 19 . . . . . . . 8  |-  ( z  =  A  ->  z  =  A )
8987, 88eleq12d 2210 . . . . . . 7  |-  ( z  =  A  ->  (
( f `  z
)  e.  z  <->  ( f `  A )  e.  A
) )
906prid1 3629 . . . . . . . . 9  |-  A  e. 
{ A ,  B }
9190, 2eleqtrri 2215 . . . . . . . 8  |-  A  e.  C
9291a1i 9 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A  e.  C )
9389, 70, 92rspcdva 2794 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  A
)  e.  A )
94 eqeq1 2146 . . . . . . . 8  |-  ( x  =  ( f `  A )  ->  (
x  =  (/)  <->  ( f `  A )  =  (/) ) )
9594orbi1d 780 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  (
( x  =  (/)  \/  y  =  { (/) } )  <->  ( ( f `
 A )  =  (/)  \/  y  =  { (/)
} ) ) )
9695, 3elrab2 2843 . . . . . 6  |-  ( ( f `  A )  e.  A  <->  ( (
f `  A )  e.  { (/) ,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9793, 96sylib 121 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  e.  { (/)
,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9897simprd 113 . . . 4  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  =  (/)  \/  y  =  { (/) } ) )
9983, 86, 98mpjaodan 787 . . 3  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> DECID  y  =  { (/) } )
10044, 99exlimddv 1870 . 2  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> DECID 
y  =  { (/) } )
101100exmid1dc 4123 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   {crab 2420   _Vcvv 2686    C_ wss 3071   (/)c0 3363   {csn 3527   {cpr 3528  EXMIDwem 4118    Fn wfn 5118   ` cfv 5123  CHOICEwac 7061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-exmid 4119  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ac 7062
This theorem is referenced by:  exmidac  7065
  Copyright terms: Public domain W3C validator