ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaord Unicode version

Theorem nnaord 6113
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaord  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )

Proof of Theorem nnaord
StepHypRef Expression
1 nnaordi 6112 . . 3  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
213adant1 933 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
3 oveq2 5548 . . . . . 6  |-  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B
) )
43a1i 9 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B ) ) )
5 nnaordi 6112 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( B  e.  A  ->  ( C  +o  B
)  e.  ( C  +o  A ) ) )
653adant2 934 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  e.  A  ->  ( C  +o  B )  e.  ( C  +o  A ) ) )
74, 6orim12d 710 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  +o  A )  =  ( C  +o  B
)  \/  ( C  +o  B )  e.  ( C  +o  A
) ) ) )
87con3d 571 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 df-3an 898 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om ) )
10 ancom 257 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om ) 
<->  ( C  e.  om  /\  ( A  e.  om  /\  B  e.  om )
) )
11 anandi 532 . . . . . 6  |-  ( ( C  e.  om  /\  ( A  e.  om  /\  B  e.  om )
)  <->  ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om ) ) )
129, 10, 113bitri 199 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om ) ) )
13 nnacl 6090 . . . . . 6  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  A
)  e.  om )
14 nnacl 6090 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  +o  B
)  e.  om )
1513, 14anim12i 325 . . . . 5  |-  ( ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om )
)  ->  ( ( C  +o  A )  e. 
om  /\  ( C  +o  B )  e.  om ) )
1612, 15sylbi 118 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )
)
17 nntri2 6104 . . . 4  |-  ( ( ( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )  ->  ( ( C  +o  A )  e.  ( C  +o  B )  <->  -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) ) ) )
1816, 17syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
19 nntri2 6104 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
20193adant3 935 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
218, 18, 203imtr4d 196 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  ->  A  e.  B )
)
222, 21impbid 124 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    /\ w3a 896    = wceq 1259    e. wcel 1409   omcom 4341  (class class class)co 5540    +o coa 6029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036
This theorem is referenced by:  nnaordr  6114  nnaordex  6131  ltapig  6494  1lt2pi  6496
  Copyright terms: Public domain W3C validator