ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm1 Unicode version

Theorem nnm1 6163
Description: Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )

Proof of Theorem nnm1
StepHypRef Expression
1 df-1o 6065 . . 3  |-  1o  =  suc  (/)
21oveq2i 5554 . 2  |-  ( A  .o  1o )  =  ( A  .o  suc  (/) )
3 peano1 4343 . . . 4  |-  (/)  e.  om
4 nnmsuc 6121 . . . 4  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
53, 4mpan2 416 . . 3  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
6 nnm0 6119 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
76oveq1d 5558 . . 3  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  A )  =  (
(/)  +o  A )
)
8 nna0r 6122 . . 3  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
95, 7, 83eqtrd 2118 . 2  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  A )
102, 9syl5eq 2126 1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   (/)c0 3258   suc csuc 4128   omcom 4339  (class class class)co 5543   1oc1o 6058    +o coa 6062    .o comu 6063
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-oadd 6069  df-omul 6070
This theorem is referenced by:  nnm2  6164  mulidpi  6570  archnqq  6669  nq0a0  6709  nq02m  6717
  Copyright terms: Public domain W3C validator