ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu Unicode version

Theorem suplocexprlemmu 7526
Description: Lemma for suplocexpr 7533. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemmu  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Distinct variable groups:    A, s, u, w    x, A, y, s, u    B, s    ph, s, u, x, y
Allowed substitution hints:    ph( z, w)    A( z)    B( x, y, z, w, u)

Proof of Theorem suplocexprlemmu
Dummy variables  j  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 prop 7283 . . . . . . 7  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
3 prmu 7286 . . . . . . 7  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
42, 3syl 14 . . . . . 6  |-  ( x  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
54ad2antrl 481 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
6 fo2nd 6056 . . . . . . . . . . . . 13  |-  2nd : _V -onto-> _V
7 fofun 5346 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
9 fvelima 5473 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
108, 9mpan 420 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd " A
)  ->  E. u  e.  A  ( 2nd `  u )  =  t )
1110adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
12 suplocexpr.m . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  x  e.  A )
13 suplocexpr.loc . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
1412, 1, 13suplocexprlemss 7523 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  P. )
1514ad5antr 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A  C_  P. )
16 simprl 520 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  A
)
1715, 16sseldd 3098 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  P. )
18 simprl 520 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  x  e.  P. )
1918ad4antr 485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  x  e.  P. )
20 breq1 3932 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
y  <P  x  <->  u  <P  x ) )
21 simprr 521 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  A. y  e.  A  y  <P  x )
2221ad4antr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A. y  e.  A  y  <P  x )
2320, 22, 16rspcdva 2794 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  <P  x
)
24 ltsopr 7404 . . . . . . . . . . . . . . . . 17  |-  <P  Or  P.
25 so2nr 4243 . . . . . . . . . . . . . . . . 17  |-  ( ( 
<P  Or  P.  /\  (
u  e.  P.  /\  x  e.  P. )
)  ->  -.  (
u  <P  x  /\  x  <P  u ) )
2624, 25mpan 420 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  x  e.  P. )  ->  -.  ( u  <P  x  /\  x  <P  u
) )
2717, 19, 26syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  ( u  <P  x  /\  x  <P  u ) )
28 imnan 679 . . . . . . . . . . . . . . 15  |-  ( ( u  <P  x  ->  -.  x  <P  u )  <->  -.  ( u  <P  x  /\  x  <P  u ) )
2927, 28sylibr 133 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( u  <P  x  ->  -.  x  <P  u ) )
3023, 29mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  x  <P  u )
31 aptiprlemu 7448 . . . . . . . . . . . . 13  |-  ( ( u  e.  P.  /\  x  e.  P.  /\  -.  x  <P  u )  -> 
( 2nd `  x
)  C_  ( 2nd `  u ) )
3217, 19, 30, 31syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  x
)  C_  ( 2nd `  u ) )
33 simpllr 523 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  x ) )
3432, 33sseldd 3098 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  u ) )
35 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  u
)  =  t )
3634, 35eleqtrd 2218 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  t )
3711, 36rexlimddv 2554 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  s  e.  t )
3837ralrimiva 2505 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  A. t  e.  ( 2nd " A
) s  e.  t )
39 vex 2689 . . . . . . . . 9  |-  s  e. 
_V
4039elint2 3778 . . . . . . . 8  |-  ( s  e.  |^| ( 2nd " A
)  <->  A. t  e.  ( 2nd " A ) s  e.  t )
4138, 40sylibr 133 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  s  e.  |^| ( 2nd " A
) )
4241ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  P.  /\  A. y  e.  A  y 
<P  x ) )  /\  s  e.  Q. )  ->  ( s  e.  ( 2nd `  x )  ->  s  e.  |^| ( 2nd " A ) ) )
4342reximdva 2534 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  ( E. s  e.  Q.  s  e.  ( 2nd `  x )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) ) )
445, 43mpd 13 . . . 4  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
451, 44rexlimddv 2554 . . 3  |-  ( ph  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
46 simprr 521 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  |^| ( 2nd " A ) )
47 simprl 520 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  Q. )
48 1nq 7174 . . . . . . . . 9  |-  1Q  e.  Q.
49 addclnq 7183 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
( s  +Q  1Q )  e.  Q. )
5047, 48, 49sylancl 409 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( s  +Q  1Q )  e.  Q. )
51 ltaddnq 7215 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
s  <Q  ( s  +Q  1Q ) )
5247, 48, 51sylancl 409 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  <Q  ( s  +Q  1Q ) )
53 breq2 3933 . . . . . . . . 9  |-  ( j  =  ( s  +Q  1Q )  ->  (
s  <Q  j  <->  s  <Q  ( s  +Q  1Q ) ) )
5453rspcev 2789 . . . . . . . 8  |-  ( ( ( s  +Q  1Q )  e.  Q.  /\  s  <Q  ( s  +Q  1Q ) )  ->  E. j  e.  Q.  s  <Q  j
)
5550, 52, 54syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  s  <Q  j )
56 breq1 3932 . . . . . . . . 9  |-  ( w  =  s  ->  (
w  <Q  j  <->  s  <Q  j ) )
5756rexbidv 2438 . . . . . . . 8  |-  ( w  =  s  ->  ( E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  s  <Q  j
) )
5857rspcev 2789 . . . . . . 7  |-  ( ( s  e.  |^| ( 2nd " A )  /\  E. j  e.  Q.  s  <Q  j )  ->  E. w  e.  |^| ( 2nd " A
) E. j  e. 
Q.  w  <Q  j
)
5946, 55, 58syl2anc 408 . . . . . 6  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j )
60 rexcom 2595 . . . . . 6  |-  ( E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
6159, 60sylib 121 . . . . 5  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
62 ssid 3117 . . . . . 6  |-  Q.  C_  Q.
63 rexss 3164 . . . . . 6  |-  ( Q.  C_  Q.  ->  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A
) w  <Q  j  <->  E. j  e.  Q.  (
j  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  j ) ) )
6462, 63ax-mp 5 . . . . 5  |-  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w  <Q  j  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
6561, 64sylib 121 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
66 suplocexpr.b . . . . . . . . . 10  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
6766suplocexprlem2b 7522 . . . . . . . . 9  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
6814, 67syl 14 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
6968eleq2d 2209 . . . . . . 7  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
j  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
70 breq2 3933 . . . . . . . . 9  |-  ( u  =  j  ->  (
w  <Q  u  <->  w  <Q  j ) )
7170rexbidv 2438 . . . . . . . 8  |-  ( u  =  j  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7271elrab 2840 . . . . . . 7  |-  ( j  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7369, 72syl6bb 195 . . . . . 6  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7473rexbidv 2438 . . . . 5  |-  ( ph  ->  ( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7574adantr 274 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7665, 75mpbird 166 . . 3  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
7745, 76rexlimddv 2554 . 2  |-  ( ph  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
78 eleq1w 2200 . . 3  |-  ( j  =  s  ->  (
j  e.  ( 2nd `  B )  <->  s  e.  ( 2nd `  B ) ) )
7978cbvrexv 2655 . 2  |-  ( E. j  e.  Q.  j  e.  ( 2nd `  B
)  <->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
8077, 79sylib 121 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   <.cop 3530   U.cuni 3736   |^|cint 3771   class class class wbr 3929    Or wor 4217   "cima 4542   Fun wfun 5117   -onto->wfo 5121   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088   1Qc1q 7089    +Q cplq 7090    <Q cltq 7093   P.cnp 7099    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iltp 7278
This theorem is referenced by:  suplocexprlemex  7530
  Copyright terms: Public domain W3C validator