Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unass Unicode version

Theorem unass 3128
 Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unass

Proof of Theorem unass
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elun 3112 . . 3
2 elun 3112 . . . 4
32orbi2i 689 . . 3
4 elun 3112 . . . . 5
54orbi1i 690 . . . 4
6 orass 694 . . . 4
75, 6bitr2i 178 . . 3
81, 3, 73bitrri 200 . 2
98uneqri 3113 1
 Colors of variables: wff set class Syntax hints:   wo 639   wceq 1259   wcel 1409   cun 2943 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950 This theorem is referenced by:  un12  3129  un23  3130  un4  3131  qdass  3495  qdassr  3496  rdgisucinc  6003  oasuc  6075  fzosplitprm1  9192
 Copyright terms: Public domain W3C validator