ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashunlem Unicode version

Theorem hashunlem 10550
Description: Lemma for hashun 10551. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
Hypotheses
Ref Expression
hashunlem.a  |-  ( ph  ->  A  e.  Fin )
hashunlem.b  |-  ( ph  ->  B  e.  Fin )
hashunlem.disj  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
hashunlem.n  |-  ( ph  ->  N  e.  om )
hashunlem.m  |-  ( ph  ->  M  e.  om )
hashunlem.an  |-  ( ph  ->  A  ~~  N )
hashunlem.bm  |-  ( ph  ->  B  ~~  M )
Assertion
Ref Expression
hashunlem  |-  ( ph  ->  ( A  u.  B
)  ~~  ( N  +o  M ) )

Proof of Theorem hashunlem
Dummy variables  j  w  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3932 . . . . 5  |-  ( w  =  (/)  ->  ( w 
~~  j  <->  (/)  ~~  j
) )
2 uneq2 3224 . . . . . 6  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
32breq1d 3939 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  u.  w ) 
~~  ( N  +o  j )  <->  ( A  u.  (/) )  ~~  ( N  +o  j ) ) )
41, 3anbi12d 464 . . . 4  |-  ( w  =  (/)  ->  ( ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) ) )
54rexbidv 2438 . . 3  |-  ( w  =  (/)  ->  ( E. j  e.  om  (
w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) ) )
6 breq1 3932 . . . . 5  |-  ( w  =  y  ->  (
w  ~~  j  <->  y  ~~  j ) )
7 uneq2 3224 . . . . . 6  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
87breq1d 3939 . . . . 5  |-  ( w  =  y  ->  (
( A  u.  w
)  ~~  ( N  +o  j )  <->  ( A  u.  y )  ~~  ( N  +o  j ) ) )
96, 8anbi12d 464 . . . 4  |-  ( w  =  y  ->  (
( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j
) ) ) )
109rexbidv 2438 . . 3  |-  ( w  =  y  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) ) ) )
11 breq1 3932 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  ~~  j 
<->  ( y  u.  {
z } )  ~~  j ) )
12 uneq2 3224 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
1312breq1d 3939 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  ~~  ( N  +o  j
)  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  j ) ) )
1411, 13anbi12d 464 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
~~  j  /\  ( A  u.  w )  ~~  ( N  +o  j
) )  <->  ( (
y  u.  { z } )  ~~  j  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  j
) ) ) )
1514rexbidv 2438 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w )  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) ) ) )
16 breq1 3932 . . . . 5  |-  ( w  =  B  ->  (
w  ~~  j  <->  B  ~~  j ) )
17 uneq2 3224 . . . . . 6  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
1817breq1d 3939 . . . . 5  |-  ( w  =  B  ->  (
( A  u.  w
)  ~~  ( N  +o  j )  <->  ( A  u.  B )  ~~  ( N  +o  j ) ) )
1916, 18anbi12d 464 . . . 4  |-  ( w  =  B  ->  (
( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( B  ~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )
2019rexbidv 2438 . . 3  |-  ( w  =  B  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( B  ~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j ) ) ) )
21 peano1 4508 . . . . 5  |-  (/)  e.  om
2221a1i 9 . . . 4  |-  ( ph  -> 
(/)  e.  om )
23 0ex 4055 . . . . . 6  |-  (/)  e.  _V
2423enref 6659 . . . . 5  |-  (/)  ~~  (/)
2524a1i 9 . . . 4  |-  ( ph  -> 
(/)  ~~  (/) )
26 hashunlem.an . . . . 5  |-  ( ph  ->  A  ~~  N )
27 un0 3396 . . . . . 6  |-  ( A  u.  (/) )  =  A
2827a1i 9 . . . . 5  |-  ( ph  ->  ( A  u.  (/) )  =  A )
29 hashunlem.n . . . . . 6  |-  ( ph  ->  N  e.  om )
30 nna0 6370 . . . . . 6  |-  ( N  e.  om  ->  ( N  +o  (/) )  =  N )
3129, 30syl 14 . . . . 5  |-  ( ph  ->  ( N  +o  (/) )  =  N )
3226, 28, 313brtr4d 3960 . . . 4  |-  ( ph  ->  ( A  u.  (/) )  ~~  ( N  +o  (/) ) )
33 breq2 3933 . . . . . 6  |-  ( j  =  (/)  ->  ( (/)  ~~  j  <->  (/)  ~~  (/) ) )
34 oveq2 5782 . . . . . . 7  |-  ( j  =  (/)  ->  ( N  +o  j )  =  ( N  +o  (/) ) )
3534breq2d 3941 . . . . . 6  |-  ( j  =  (/)  ->  ( ( A  u.  (/) )  ~~  ( N  +o  j
)  <->  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) )
3633, 35anbi12d 464 . . . . 5  |-  ( j  =  (/)  ->  ( (
(/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) )  <->  ( (/)  ~~  (/)  /\  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) ) )
3736rspcev 2789 . . . 4  |-  ( (
(/)  e.  om  /\  ( (/)  ~~  (/)  /\  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) )  ->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) )
3822, 25, 32, 37syl12anc 1214 . . 3  |-  ( ph  ->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) )
39 peano2 4509 . . . . . . . 8  |-  ( j  e.  om  ->  suc  j  e.  om )
4039ad2antlr 480 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  suc  j  e.  om )
41 simp-4r 531 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  e.  Fin )
42 vex 2689 . . . . . . . . . 10  |-  z  e. 
_V
4342a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  _V )
44 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  z  e.  ( B  \  y ) )
4544ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( B  \  y ) )
4645eldifbd 3083 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  y )
4743, 46eldifd 3081 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( _V  \  y ) )
48 simplr 519 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  j  e.  om )
49 simprl 520 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  ~~  j
)
50 fiunsnnn 6775 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  z  e.  ( _V 
\  y ) )  /\  ( j  e. 
om  /\  y  ~~  j ) )  -> 
( y  u.  {
z } )  ~~  suc  j )
5141, 47, 48, 49, 50syl22anc 1217 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( y  u. 
{ z } ) 
~~  suc  j )
52 hashunlem.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  Fin )
5352ad4antr 485 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  A  e.  Fin )
54 simprl 520 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  y  C_  B
)
5554ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  C_  B
)
56 hashunlem.disj . . . . . . . . . . . 12  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
5756ad4antr 485 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  i^i  B )  =  (/) )
58 incom 3268 . . . . . . . . . . . 12  |-  ( y  i^i  A )  =  ( A  i^i  y
)
59 incom 3268 . . . . . . . . . . . . . 14  |-  ( A  i^i  B )  =  ( B  i^i  A
)
6059eqeq1i 2147 . . . . . . . . . . . . 13  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
61 ssdisj 3419 . . . . . . . . . . . . 13  |-  ( ( y  C_  B  /\  ( B  i^i  A )  =  (/) )  ->  (
y  i^i  A )  =  (/) )
6260, 61sylan2b 285 . . . . . . . . . . . 12  |-  ( ( y  C_  B  /\  ( A  i^i  B )  =  (/) )  ->  (
y  i^i  A )  =  (/) )
6358, 62syl5eqr 2186 . . . . . . . . . . 11  |-  ( ( y  C_  B  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  y )  =  (/) )
6455, 57, 63syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  i^i  y )  =  (/) )
65 unfidisj 6810 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  y  e.  Fin  /\  ( A  i^i  y )  =  (/) )  ->  ( A  u.  y )  e. 
Fin )
6653, 41, 64, 65syl3anc 1216 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  y )  e.  Fin )
6745eldifad 3082 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  B
)
68 minel 3424 . . . . . . . . . . . 12  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
6967, 57, 68syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  A )
70 ioran 741 . . . . . . . . . . . 12  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
71 elun 3217 . . . . . . . . . . . 12  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
7270, 71xchnxbir 670 . . . . . . . . . . 11  |-  ( -.  z  e.  ( A  u.  y )  <->  ( -.  z  e.  A  /\  -.  z  e.  y
) )
7369, 46, 72sylanbrc 413 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  ( A  u.  y
) )
7443, 73eldifd 3081 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( _V  \  ( A  u.  y ) ) )
7529ad4antr 485 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  N  e.  om )
76 nnacl 6376 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( N  +o  j
)  e.  om )
7775, 48, 76syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( N  +o  j )  e.  om )
78 simprr 521 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  y )  ~~  ( N  +o  j ) )
79 fiunsnnn 6775 . . . . . . . . 9  |-  ( ( ( ( A  u.  y )  e.  Fin  /\  z  e.  ( _V 
\  ( A  u.  y ) ) )  /\  ( ( N  +o  j )  e. 
om  /\  ( A  u.  y )  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u.  { z } ) 
~~  suc  ( N  +o  j ) )
8066, 74, 77, 78, 79syl22anc 1217 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u. 
{ z } ) 
~~  suc  ( N  +o  j ) )
81 unass 3233 . . . . . . . . . 10  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
8281a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u. 
{ z } )  =  ( A  u.  ( y  u.  {
z } ) ) )
8382eqcomd 2145 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  ( y  u.  {
z } ) )  =  ( ( A  u.  y )  u. 
{ z } ) )
84 nnasuc 6372 . . . . . . . . 9  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( N  +o  suc  j )  =  suc  ( N  +o  j
) )
8575, 48, 84syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( N  +o  suc  j )  =  suc  ( N  +o  j
) )
8680, 83, 853brtr4d 3960 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) )
87 breq2 3933 . . . . . . . . 9  |-  ( k  =  suc  j  -> 
( ( y  u. 
{ z } ) 
~~  k  <->  ( y  u.  { z } ) 
~~  suc  j )
)
88 oveq2 5782 . . . . . . . . . 10  |-  ( k  =  suc  j  -> 
( N  +o  k
)  =  ( N  +o  suc  j ) )
8988breq2d 3941 . . . . . . . . 9  |-  ( k  =  suc  j  -> 
( ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  k )  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) ) )
9087, 89anbi12d 464 . . . . . . . 8  |-  ( k  =  suc  j  -> 
( ( ( y  u.  { z } )  ~~  k  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  k
) )  <->  ( (
y  u.  { z } )  ~~  suc  j  /\  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) ) ) )
9190rspcev 2789 . . . . . . 7  |-  ( ( suc  j  e.  om  /\  ( ( y  u. 
{ z } ) 
~~  suc  j  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  suc  j
) ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) )
9240, 51, 86, 91syl12anc 1214 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) )
9392ex 114 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  ->  (
( y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
9493rexlimdva 2549 . . . 4  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
95 breq2 3933 . . . . . 6  |-  ( j  =  k  ->  (
( y  u.  {
z } )  ~~  j 
<->  ( y  u.  {
z } )  ~~  k ) )
96 oveq2 5782 . . . . . . 7  |-  ( j  =  k  ->  ( N  +o  j )  =  ( N  +o  k
) )
9796breq2d 3941 . . . . . 6  |-  ( j  =  k  ->  (
( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  j
)  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  k ) ) )
9895, 97anbi12d 464 . . . . 5  |-  ( j  =  k  ->  (
( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) )  <-> 
( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
9998cbvrexv 2655 . . . 4  |-  ( E. j  e.  om  (
( y  u.  {
z } )  ~~  j  /\  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  j ) )  <->  E. k  e.  om  ( ( y  u.  { z } )  ~~  k  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  k
) ) )
10094, 99syl6ibr 161 . . 3  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) )  ->  E. j  e.  om  ( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) ) ) )
101 hashunlem.b . . 3  |-  ( ph  ->  B  e.  Fin )
1025, 10, 15, 20, 38, 100, 101findcard2sd 6786 . 2  |-  ( ph  ->  E. j  e.  om  ( B  ~~  j  /\  ( A  u.  B
)  ~~  ( N  +o  j ) ) )
103 simprrr 529 . . 3  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( A  u.  B )  ~~  ( N  +o  j ) )
104 hashunlem.bm . . . . . . 7  |-  ( ph  ->  B  ~~  M )
105104ensymd 6677 . . . . . 6  |-  ( ph  ->  M  ~~  B )
106 simprrl 528 . . . . . 6  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  B  ~~  j
)
107 entr 6678 . . . . . 6  |-  ( ( M  ~~  B  /\  B  ~~  j )  ->  M  ~~  j )
108105, 106, 107syl2an2r 584 . . . . 5  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  M  ~~  j
)
109 hashunlem.m . . . . . 6  |-  ( ph  ->  M  e.  om )
110 simprl 520 . . . . . 6  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  j  e.  om )
111 nneneq 6751 . . . . . 6  |-  ( ( M  e.  om  /\  j  e.  om )  ->  ( M  ~~  j  <->  M  =  j ) )
112109, 110, 111syl2an2r 584 . . . . 5  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( M  ~~  j 
<->  M  =  j ) )
113108, 112mpbid 146 . . . 4  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  M  =  j )
114113oveq2d 5790 . . 3  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( N  +o  M )  =  ( N  +o  j ) )
115103, 114breqtrrd 3956 . 2  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( A  u.  B )  ~~  ( N  +o  M ) )
116102, 115rexlimddv 2554 1  |-  ( ph  ->  ( A  u.  B
)  ~~  ( N  +o  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2417   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929   suc csuc 4287   omcom 4504  (class class class)co 5774    +o coa 6310    ~~ cen 6632   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  hashun  10551
  Copyright terms: Public domain W3C validator