ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 GIF version

Theorem recgt0 7984
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 7292 . . . . 5 0 < 1
2 0re 7170 . . . . . 6 0 ∈ ℝ
3 1re 7169 . . . . . 6 1 ∈ ℝ
42, 3ltnsymi 7266 . . . . 5 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 7 . . . 4 ¬ 1 < 0
6 simpll 496 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℝ)
7 gt0ap0 7781 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
87adantr 270 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0)
96, 8rerecclapd 7975 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
109renegcld 7540 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈ ℝ)
11 simpr 108 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0)
12 simpl 107 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1312, 7rerecclapd 7975 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
1413adantr 270 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1514lt0neg1d 7672 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
1611, 15mpbid 145 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 / 𝐴))
17 simplr 497 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴)
1810, 6, 16, 17mulgt0d 7288 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 / 𝐴) · 𝐴))
1912recnd 7198 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2019adantr 270 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℂ)
21 recclap 7823 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
2220, 8, 21syl2anc 403 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℂ)
2322, 20mulneg1d 7571 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴))
24 recidap2 7831 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
2520, 8, 24syl2anc 403 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1)
2625negeqd 7359 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1)
2723, 26eqtrd 2114 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1)
2818, 27breqtrd 3811 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -1)
29 1red 7185 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈ ℝ)
3029lt0neg1d 7672 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0 ↔ 0 < -1))
3128, 30mpbird 165 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 < 0)
3231ex 113 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < 0 → 1 < 0))
335, 32mtoi 623 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
34 lenlt 7243 . . . 4 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
352, 13, 34sylancr 405 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
3633, 35mpbird 165 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
37 recap0 7829 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
3819, 7, 37syl2anc 403 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) # 0)
3919, 7, 21syl2anc 403 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
40 0cn 7162 . . . 4 0 ∈ ℂ
41 apsym 7762 . . . 4 (((1 / 𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4239, 40, 41sylancl 404 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4338, 42mpbid 145 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 # (1 / 𝐴))
44 ltleap 7786 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
452, 13, 44sylancr 405 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
4636, 43, 45mpbir2and 886 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3787  (class class class)co 5537  cc 7030  cr 7031  0cc0 7032  1c1 7033   · cmul 7037   < clt 7204  cle 7205  -cneg 7336   # cap 7737   / cdiv 7816
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-id 4050  df-po 4053  df-iso 4054  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-iota 4891  df-fun 4928  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817
This theorem is referenced by:  prodgt0gt0  7985  ltdiv1  8002  ltrec1  8022  lerec2  8023  lediv12a  8028  recgt1i  8032  recreclt  8034  recgt0i  8040  recgt0ii  8041  recgt0d  8068  nnrecgt0  8132  nnrecl  8342
  Copyright terms: Public domain W3C validator