ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0 GIF version

Theorem elznn0 8447
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))

Proof of Theorem elznn0
StepHypRef Expression
1 elz 8434 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 elnn0 8357 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32a1i 9 . . . . 5 (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)))
4 elnn0 8357 . . . . . 6 (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))
5 recn 7168 . . . . . . . . 9 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
6 0cn 7173 . . . . . . . . 9 0 ∈ ℂ
7 negcon1 7427 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁))
85, 6, 7sylancl 404 . . . . . . . 8 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁))
9 neg0 7421 . . . . . . . . . 10 -0 = 0
109eqeq1i 2089 . . . . . . . . 9 (-0 = 𝑁 ↔ 0 = 𝑁)
11 eqcom 2084 . . . . . . . . 9 (0 = 𝑁𝑁 = 0)
1210, 11bitri 182 . . . . . . . 8 (-0 = 𝑁𝑁 = 0)
138, 12syl6bb 194 . . . . . . 7 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0))
1413orbi2d 737 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
154, 14syl5bb 190 . . . . 5 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
163, 15orbi12d 740 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
17 3orass 923 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
18 orcom 680 . . . . 5 ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0))
19 orordir 724 . . . . 5 (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2017, 18, 193bitrri 205 . . . 4 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
2116, 20syl6rbb 195 . . 3 (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2221pm5.32i 442 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
231, 22bitri 182 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wo 662  w3o 919   = wceq 1285  wcel 1434  cc 7041  cr 7042  0cc0 7043  -cneg 7347  cn 8106  0cn0 8355  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-sub 7348  df-neg 7349  df-n0 8356  df-z 8433
This theorem is referenced by:  peano2z  8468  zmulcl  8485  elz2  8500  expnegzap  9607  expaddzaplem  9616  odd2np1  10417  bezoutlemzz  10535  bezoutlemaz  10536  bezoutlembz  10537
  Copyright terms: Public domain W3C validator