ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npr GIF version

Theorem 0npr 7294
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 noel 3367 . . . . . 6 ¬ 𝑥 ∈ ∅
2 1st0 6042 . . . . . . 7 (1st ‘∅) = ∅
32eleq2i 2206 . . . . . 6 (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅)
41, 3mtbir 660 . . . . 5 ¬ 𝑥 ∈ (1st ‘∅)
54nex 1476 . . . 4 ¬ ∃𝑥 𝑥 ∈ (1st ‘∅)
6 rexex 2479 . . . 4 (∃𝑥Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅))
75, 6mto 651 . . 3 ¬ ∃𝑥Q 𝑥 ∈ (1st ‘∅)
8 prml 7288 . . 3 (⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st ‘∅))
97, 8mto 651 . 2 ¬ ⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P
10 prop 7286 . 2 (∅ ∈ P → ⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P)
119, 10mto 651 1 ¬ ∅ ∈ P
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1468  wcel 1480  wrex 2417  c0 3363  cop 3530  cfv 5123  1st c1st 6036  2nd c2nd 6037  Qcnq 7091  Pcnp 7102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-qs 6435  df-ni 7115  df-nqqs 7159  df-inp 7277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator