ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext GIF version

Theorem absext 9890
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))

Proof of Theorem absext
StepHypRef Expression
1 absval2 9884 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
2 absval2 9884 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
31, 2breqan12d 3807 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))))
4 simpl 106 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
54recld 9766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65resqcld 9575 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℝ)
74imcld 9767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87resqcld 9575 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℝ)
96, 8readdcld 7114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
105sqge0d 9576 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐴)↑2))
117sqge0d 9576 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐴)↑2))
126, 8, 10, 11addge0d 7587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
13 simpr 107 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413recld 9766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1514resqcld 9575 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℝ)
1613imcld 9767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1716resqcld 9575 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℝ)
1815, 17readdcld 7114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ)
1914sqge0d 9576 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐵)↑2))
2016sqge0d 9576 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐵)↑2))
2115, 17, 19, 20addge0d 7587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
22 sqrt11ap 9865 . . . . . . 7 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ ((((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
239, 12, 18, 21, 22syl22anc 1147 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
243, 23bitrd 181 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
256recnd 7113 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℂ)
268recnd 7113 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℂ)
2715recnd 7113 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℂ)
2817recnd 7113 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℂ)
29 addext 7675 . . . . . 6 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (((ℜ‘𝐵)↑2) ∈ ℂ ∧ ((ℑ‘𝐵)↑2) ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3025, 26, 27, 28, 29syl22anc 1147 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3124, 30sylbid 143 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
325recnd 7113 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
3332sqvald 9546 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
3414recnd 7113 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
3534sqvald 9546 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) = ((ℜ‘𝐵) · (ℜ‘𝐵)))
3633, 35breq12d 3805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ↔ ((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵))))
37 mulext 7679 . . . . . . . 8 ((((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) ∧ ((ℜ‘𝐵) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ)) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3832, 32, 34, 34, 37syl22anc 1147 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3936, 38sylbid 143 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
40 oridm 684 . . . . . 6 (((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵)) ↔ (ℜ‘𝐴) # (ℜ‘𝐵))
4139, 40syl6ib 154 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → (ℜ‘𝐴) # (ℜ‘𝐵)))
427recnd 7113 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
4342sqvald 9546 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
4416recnd 7113 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
4544sqvald 9546 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) = ((ℑ‘𝐵) · (ℑ‘𝐵)))
4643, 45breq12d 3805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) ↔ ((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵))))
47 mulext 7679 . . . . . . . 8 ((((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) ∧ ((ℑ‘𝐵) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ)) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4842, 42, 44, 44, 47syl22anc 1147 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4946, 48sylbid 143 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
50 oridm 684 . . . . . 6 (((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)) ↔ (ℑ‘𝐴) # (ℑ‘𝐵))
5149, 50syl6ib 154 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → (ℑ‘𝐴) # (ℑ‘𝐵)))
5241, 51orim12d 710 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5331, 52syld 44 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
54 apreim 7668 . . . 4 ((((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) ∧ ((ℜ‘𝐵) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ)) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
555, 7, 14, 16, 54syl22anc 1147 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5653, 55sylibrd 162 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
574replimd 9769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5813replimd 9769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
5957, 58breq12d 3805 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
6056, 59sylibrd 162 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639  wcel 1409   class class class wbr 3792  cfv 4930  (class class class)co 5540  cc 6945  cr 6946  0cc0 6947  ici 6949   + caddc 6950   · cmul 6952  cle 7120   # cap 7646  2c2 8040  cexp 9419  cre 9668  cim 9669  csqrt 9823  abscabs 9824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-arch 7061  ax-caucvg 7062
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-2 8049  df-3 8050  df-4 8051  df-n0 8240  df-z 8303  df-uz 8570  df-rp 8682  df-iseq 9376  df-iexp 9420  df-cj 9670  df-re 9671  df-im 9672  df-rsqrt 9825  df-abs 9826
This theorem is referenced by:  abssubap0  9917
  Copyright terms: Public domain W3C validator