Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3043
 Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3040 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2174 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3005 1 {𝑥𝜑} ⊆ 𝐴
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409  {cab 2042   ⊆ wss 2945 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-in 2952  df-ss 2959 This theorem is referenced by:  ssab2  3052  abf  3288  intab  3672  opabss  3849  relopabi  4491  exse2  4727  tfrlem8  5965  frecabex  6015  fiprc  6323  nqprxx  6702  ltnqex  6705  gtnqex  6706  recexprlemell  6778  recexprlemelu  6779  recexprlempr  6788
 Copyright terms: Public domain W3C validator