ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr GIF version

Theorem addextpr 6873
Description: Strong extensionality of addition (ordering version). This is similar to addext 7777 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Proof of Theorem addextpr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 6789 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21adantr 270 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) ∈ P)
3 addclpr 6789 . . . 4 ((𝐶P𝐷P) → (𝐶 +P 𝐷) ∈ P)
43adantl 271 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐷) ∈ P)
5 simprl 498 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐶P)
6 simplr 497 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐵P)
7 addclpr 6789 . . . 4 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
85, 6, 7syl2anc 403 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) ∈ P)
9 ltsopr 6848 . . . 4 <P Or P
10 sowlin 4083 . . . 4 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
119, 10mpan 415 . . 3 (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
122, 4, 8, 11syl3anc 1170 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
13 simpll 496 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐴P)
14 ltaprg 6871 . . . . 5 ((𝐴P𝐶P𝐵P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
1513, 5, 6, 14syl3anc 1170 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
16 addcomprg 6830 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1716adantl 271 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1817, 13, 6caovcomd 5688 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1917, 5, 6caovcomd 5688 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶))
2018, 19breq12d 3806 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
2115, 20bitr4d 189 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵)))
22 simprr 499 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐷P)
23 ltaprg 6871 . . . 4 ((𝐵P𝐷P𝐶P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
246, 22, 5, 23syl3anc 1170 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
2521, 24orbi12d 740 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴<P 𝐶𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
2612, 25sylibrd 167 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 920   = wceq 1285  wcel 1434   class class class wbr 3793   Or wor 4058  (class class class)co 5543  Pcnp 6543   +P cpp 6545  <P cltp 6547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-iplp 6720  df-iltp 6722
This theorem is referenced by:  mulextsr1lem  7018
  Copyright terms: Public domain W3C validator