ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1lem GIF version

Theorem mulextsr1lem 6922
Description: Lemma for mulextsr1 6923. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
mulextsr1lem (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))

Proof of Theorem mulextsr1lem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcomprg 6734 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
21adantl 266 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
3 addclpr 6693 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
43adantl 266 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5 simp2l 941 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑍P)
6 simp3r 944 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑉P)
7 mulclpr 6728 . . . . . . . 8 ((𝑍P𝑉P) → (𝑍 ·P 𝑉) ∈ P)
85, 6, 7syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑉) ∈ P)
9 simp1r 940 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑌P)
10 mulclpr 6728 . . . . . . . 8 ((𝑌P𝑉P) → (𝑌 ·P 𝑉) ∈ P)
119, 6, 10syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑉) ∈ P)
124, 8, 11caovcld 5682 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) ∈ P)
13 simp1l 939 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑋P)
14 simp3l 943 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑈P)
15 mulclpr 6728 . . . . . . . 8 ((𝑋P𝑈P) → (𝑋 ·P 𝑈) ∈ P)
1613, 14, 15syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑈) ∈ P)
17 simp2r 942 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑊P)
18 mulclpr 6728 . . . . . . . 8 ((𝑊P𝑈P) → (𝑊 ·P 𝑈) ∈ P)
1917, 14, 18syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑈) ∈ P)
204, 16, 19caovcld 5682 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) ∈ P)
212, 12, 20caovcomd 5685 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
22 addassprg 6735 . . . . . . 7 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2322adantl 266 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2416, 11, 8, 2, 23, 19, 4caov411d 5714 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))))
25 distrprg 6744 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
2625adantl 266 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
27 mulcomprg 6736 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2827adantl 266 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2926, 13, 17, 14, 4, 28caovdir2d 5705 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) = ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)))
3026, 5, 9, 6, 4, 28caovdir2d 5705 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)))
3129, 30oveq12d 5558 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
3221, 24, 313eqtr4d 2098 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)))
33 mulclpr 6728 . . . . . . 7 ((𝑋P𝑉P) → (𝑋 ·P 𝑉) ∈ P)
3413, 6, 33syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑉) ∈ P)
35 mulclpr 6728 . . . . . . 7 ((𝑌P𝑈P) → (𝑌 ·P 𝑈) ∈ P)
369, 14, 35syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑈) ∈ P)
37 mulclpr 6728 . . . . . . 7 ((𝑍P𝑈P) → (𝑍 ·P 𝑈) ∈ P)
385, 14, 37syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑈) ∈ P)
39 mulclpr 6728 . . . . . . 7 ((𝑊P𝑉P) → (𝑊 ·P 𝑉) ∈ P)
4017, 6, 39syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑉) ∈ P)
4134, 36, 38, 2, 23, 40, 4caov411d 5714 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4226, 5, 9, 14, 4, 28caovdir2d 5705 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) = ((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)))
4326, 13, 17, 6, 4, 28caovdir2d 5705 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉)))
4442, 43oveq12d 5558 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4541, 44eqtr4d 2091 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)))
4632, 45breq12d 3805 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) ↔ (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉))))
4729, 20eqeltrd 2130 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) ∈ P)
4830, 12eqeltrd 2130 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) ∈ P)
49 addclpr 6693 . . . . . . 7 ((𝑍P𝑌P) → (𝑍 +P 𝑌) ∈ P)
505, 9, 49syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) ∈ P)
51 mulclpr 6728 . . . . . 6 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
5250, 14, 51syl2anc 397 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
53 addclpr 6693 . . . . . . 7 ((𝑋P𝑊P) → (𝑋 +P 𝑊) ∈ P)
5413, 17, 53syl2anc 397 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) ∈ P)
55 mulclpr 6728 . . . . . 6 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
5654, 6, 55syl2anc 397 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
57 addextpr 6777 . . . . 5 (((((𝑋 +P 𝑊) ·P 𝑈) ∈ P ∧ ((𝑍 +P 𝑌) ·P 𝑉) ∈ P) ∧ (((𝑍 +P 𝑌) ·P 𝑈) ∈ P ∧ ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
5847, 48, 52, 56, 57syl22anc 1147 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
59 mulcomprg 6736 . . . . . . . . 9 (((𝑋 +P 𝑊) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
60593adant2 934 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
61 mulcomprg 6736 . . . . . . . . 9 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
62613adant1 933 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
6360, 62breq12d 3805 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ↔ (𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌))))
64 ltmprr 6798 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌)) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6563, 64sylbid 143 . . . . . 6 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6654, 50, 14, 65syl3anc 1146 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
67 mulcomprg 6736 . . . . . . . 8 (((𝑍 +P 𝑌) ∈ P𝑉P) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
6850, 6, 67syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
69 mulcomprg 6736 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7054, 6, 69syl2anc 397 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7168, 70breq12d 3805 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) ↔ (𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊))))
72 ltmprr 6798 . . . . . . 7 (((𝑍 +P 𝑌) ∈ P ∧ (𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7350, 54, 6, 72syl3anc 1146 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7471, 73sylbid 143 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7566, 74orim12d 710 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7658, 75syld 44 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7746, 76sylbid 143 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
78 addcomprg 6734 . . . . 5 ((𝑍P𝑌P) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
795, 9, 78syl2anc 397 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
8079breq2d 3804 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ↔ (𝑋 +P 𝑊)<P (𝑌 +P 𝑍)))
81 addcomprg 6734 . . . . 5 ((𝑋P𝑊P) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8213, 17, 81syl2anc 397 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8382breq2d 3804 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌)<P (𝑋 +P 𝑊) ↔ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))
8480, 83orbi12d 717 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)) ↔ ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
8577, 84sylibd 142 1 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wo 639  w3a 896   = wceq 1259  wcel 1409   class class class wbr 3792  (class class class)co 5540  Pcnp 6447   +P cpp 6449   ·P cmp 6450  <P cltp 6451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-imp 6625  df-iltp 6626
This theorem is referenced by:  mulextsr1  6923
  Copyright terms: Public domain W3C validator