Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcanap5 GIF version

Theorem divcanap5 7955
 Description: Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divcanap5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))

Proof of Theorem divcanap5
StepHypRef Expression
1 dividap 7942 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐶 / 𝐶) = 1)
21oveq1d 5584 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((𝐶 / 𝐶) · (𝐴 / 𝐵)) = (1 · (𝐴 / 𝐵)))
323ad2ant3 962 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 / 𝐶) · (𝐴 / 𝐵)) = (1 · (𝐴 / 𝐵)))
4 simp3l 967 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐶 ∈ ℂ)
5 simp1 939 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐴 ∈ ℂ)
6 simp3 941 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐶 ∈ ℂ ∧ 𝐶 # 0))
7 simp2 940 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
8 divmuldivap 7953 . . 3 (((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0))) → ((𝐶 / 𝐶) · (𝐴 / 𝐵)) = ((𝐶 · 𝐴) / (𝐶 · 𝐵)))
94, 5, 6, 7, 8syl22anc 1171 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 / 𝐶) · (𝐴 / 𝐵)) = ((𝐶 · 𝐴) / (𝐶 · 𝐵)))
10 divclap 7919 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
11103expb 1140 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) ∈ ℂ)
1211mulid2d 7285 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 · (𝐴 / 𝐵)) = (𝐴 / 𝐵))
13123adant3 959 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (1 · (𝐴 / 𝐵)) = (𝐴 / 𝐵))
143, 9, 133eqtr3d 2123 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 920   = wceq 1285   ∈ wcel 1434   class class class wbr 3806  (class class class)co 5569  ℂcc 7127  0cc0 7129  1c1 7130   · cmul 7134   # cap 7834   / cdiv 7913 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3994  ax-un 4218  ax-setind 4310  ax-cnex 7215  ax-resscn 7216  ax-1cn 7217  ax-1re 7218  ax-icn 7219  ax-addcl 7220  ax-addrcl 7221  ax-mulcl 7222  ax-mulrcl 7223  ax-addcom 7224  ax-mulcom 7225  ax-addass 7226  ax-mulass 7227  ax-distr 7228  ax-i2m1 7229  ax-0lt1 7230  ax-1rid 7231  ax-0id 7232  ax-rnegex 7233  ax-precex 7234  ax-cnre 7235  ax-pre-ltirr 7236  ax-pre-ltwlin 7237  ax-pre-lttrn 7238  ax-pre-apti 7239  ax-pre-ltadd 7240  ax-pre-mulgt0 7241  ax-pre-mulext 7242 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4078  df-po 4081  df-iso 4082  df-xp 4400  df-rel 4401  df-cnv 4402  df-co 4403  df-dm 4404  df-iota 4920  df-fun 4957  df-fv 4963  df-riota 5525  df-ov 5572  df-oprab 5573  df-mpt2 5574  df-pnf 7303  df-mnf 7304  df-xr 7305  df-ltxr 7306  df-le 7307  df-sub 7434  df-neg 7435  df-reap 7828  df-ap 7835  df-div 7914 This theorem is referenced by:  divcanap7  7962  divadddivap  7968  divcanap5d  8056  8th4div3  8403  flodddiv4  10575
 Copyright terms: Public domain W3C validator