ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdivdivap GIF version

Theorem divdivdivap 7868
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdivdivap (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))

Proof of Theorem divdivdivap
StepHypRef Expression
1 simprrl 506 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ)
2 simprll 504 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ)
3 simprlr 505 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 # 0)
4 divclap 7833 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐷 / 𝐶) ∈ ℂ)
51, 2, 3, 4syl3anc 1170 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 / 𝐶) ∈ ℂ)
6 simpll 496 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐴 ∈ ℂ)
7 simplrl 502 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 ∈ ℂ)
8 simplrr 503 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 # 0)
9 divclap 7833 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
106, 7, 8, 9syl3anc 1170 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 / 𝐵) ∈ ℂ)
115, 10mulcomd 7202 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 / 𝐵) · (𝐷 / 𝐶)))
12 simplr 497 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
13 simprl 498 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 ∈ ℂ ∧ 𝐶 # 0))
14 divmuldivap 7867 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
156, 1, 12, 13, 14syl22anc 1171 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
1611, 15eqtrd 2114 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
1716oveq2d 5559 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))))
18 simprr 499 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 ∈ ℂ ∧ 𝐷 # 0))
19 divmuldivap 7867 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐷 ∈ ℂ ∧ 𝐷 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶)))
202, 1, 18, 13, 19syl22anc 1171 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶)))
212, 1mulcomd 7202 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
2221oveq1d 5558 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = ((𝐷 · 𝐶) / (𝐷 · 𝐶)))
231, 2mulcld 7201 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 · 𝐶) ∈ ℂ)
24 simprrr 507 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 # 0)
251, 2, 24, 3mulap0d 7815 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 · 𝐶) # 0)
26 dividap 7856 . . . . . . . 8 (((𝐷 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐶) # 0) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1)
2723, 25, 26syl2anc 403 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1)
2822, 27eqtrd 2114 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = 1)
2920, 28eqtrd 2114 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = 1)
3029oveq1d 5558 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = (1 · (𝐴 / 𝐵)))
31 divclap 7833 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐶 / 𝐷) ∈ ℂ)
322, 1, 24, 31syl3anc 1170 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 / 𝐷) ∈ ℂ)
3332, 5, 10mulassd 7204 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))))
3410mulid2d 7199 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (1 · (𝐴 / 𝐵)) = (𝐴 / 𝐵))
3530, 33, 343eqtr3d 2122 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = (𝐴 / 𝐵))
3617, 35eqtr3d 2116 . 2 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵))
376, 1mulcld 7201 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) ∈ ℂ)
387, 2mulcld 7201 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) ∈ ℂ)
39 mulap0 7811 . . . . 5 (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 · 𝐶) # 0)
4039ad2ant2lr 494 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) # 0)
41 divclap 7833 . . . 4 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐶) # 0) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ)
4237, 38, 40, 41syl3anc 1170 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ)
43 divap0 7839 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 / 𝐷) # 0)
4443adantl 271 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 / 𝐷) # 0)
45 divmulap 7830 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) # 0)) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵)))
4610, 42, 32, 44, 45syl112anc 1174 . 2 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵)))
4736, 46mpbird 165 1 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3793  (class class class)co 5543  cc 7041  0cc0 7043  1c1 7044   · cmul 7048   # cap 7748   / cdiv 7827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828
This theorem is referenced by:  recdivap  7873  divcanap7  7876  divdivap1  7878  divdivap2  7879  divdivdivapi  7930  qreccl  8808
  Copyright terms: Public domain W3C validator