ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnap GIF version

Theorem divcnap 12724
Description: Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
Hypotheses
Ref Expression
addcncntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
divcnap.k 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
Assertion
Ref Expression
divcnap (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝐾,𝑦,𝑧

Proof of Theorem divcnap
Dummy variables 𝑎 𝑏 𝑢 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3932 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
21elrab 2840 . . . 4 (𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
3 divrecap 8448 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 0) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
433expb 1182 . . . 4 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
52, 4sylan2b 285 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑦 / 𝑧) = (𝑦 · (1 / 𝑧)))
65mpoeq3ia 5836 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) = (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧)))
7 addcncntop.j . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
87cntoptopon 12701 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
98a1i 9 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
10 divcnap.k . . . . 5 𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})
11 ssrab2 3182 . . . . . 6 {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ
12 resttopon 12340 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
139, 11, 12sylancl 409 . . . . 5 (⊤ → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
1410, 13eqeltrid 2226 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
159, 14cnmpt1st 12457 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
169, 14cnmpt2nd 12458 . . . . 5 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ 𝑧) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
17 eqid 2139 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) = (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))
18 breq1 3932 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 # 0 ↔ 𝑞 # 0))
1918elrab 2840 . . . . . . . . 9 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑞 ∈ ℂ ∧ 𝑞 # 0))
20 recclap 8439 . . . . . . . . 9 ((𝑞 ∈ ℂ ∧ 𝑞 # 0) → (1 / 𝑞) ∈ ℂ)
2119, 20sylbi 120 . . . . . . . 8 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑞) ∈ ℂ)
2217, 21fmpti 5572 . . . . . . 7 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ
23 breq1 3932 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 # 0 ↔ 𝑎 # 0))
2423elrab 2840 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
25 eqid 2139 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2)) = (inf({1, ((abs‘𝑎) · 𝑏)}, ℝ, < ) · ((abs‘𝑎) / 2))
2625reccn2ap 11082 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑎 # 0 ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
27263expa 1181 . . . . . . . . . 10 (((𝑎 ∈ ℂ ∧ 𝑎 # 0) ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
2824, 27sylanb 282 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
29 ovres 5910 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (𝑎(abs ∘ − )𝑤))
30 elrabi 2837 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 ∈ ℂ)
31 elrabi 2837 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 ∈ ℂ)
32 eqid 2139 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 12698 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑎𝑤)))
34 abssub 10873 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑎𝑤)) = (abs‘(𝑤𝑎)))
3533, 34eqtrd 2172 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3630, 31, 35syl2an 287 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎(abs ∘ − )𝑤) = (abs‘(𝑤𝑎)))
3729, 36eqtrd 2172 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) = (abs‘(𝑤𝑎)))
3837breq1d 3939 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑎)) < 𝑢))
3924simprbi 273 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑎 # 0)
4030, 39recclapd 8541 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑎) ∈ ℂ)
41 oveq2 5782 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑎 → (1 / 𝑞) = (1 / 𝑎))
4241, 17fvmptg 5497 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑎) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
4340, 42mpdan 417 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎) = (1 / 𝑎))
44 breq1 3932 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (𝑥 # 0 ↔ 𝑤 # 0))
4544elrab 2840 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
4645simprbi 273 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → 𝑤 # 0)
4731, 46recclapd 8541 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (1 / 𝑤) ∈ ℂ)
48 oveq2 5782 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑤 → (1 / 𝑞) = (1 / 𝑤))
4948, 17fvmptg 5497 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ (1 / 𝑤) ∈ ℂ) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5047, 49mpdan 417 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤) = (1 / 𝑤))
5143, 50oveqan12d 5793 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)))
5232cnmetdval 12698 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑎) − (1 / 𝑤))))
53 abssub 10873 . . . . . . . . . . . . . . . . 17 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑎) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5452, 53eqtrd 2172 . . . . . . . . . . . . . . . 16 (((1 / 𝑎) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5540, 47, 54syl2an 287 . . . . . . . . . . . . . . 15 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((1 / 𝑎)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5651, 55eqtrd 2172 . . . . . . . . . . . . . 14 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑎))))
5756breq1d 3939 . . . . . . . . . . . . 13 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏 ↔ (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏))
5838, 57imbi12d 233 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
5958ralbidva 2433 . . . . . . . . . . 11 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∀𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6059rexbidv 2438 . . . . . . . . . 10 (𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6160adantr 274 . . . . . . . . 9 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((abs‘(𝑤𝑎)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑎))) < 𝑏)))
6228, 61mpbird 166 . . . . . . . 8 ((𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑏 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))
6362rgen2 2518 . . . . . . 7 𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)
64 cnxmet 12700 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
65 xmetres2 12548 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}))
6664, 11, 65mp2an 422 . . . . . . . 8 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0})
67 eqid 2139 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) = ((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))
68 eqid 2139 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
6967, 7, 68metrest 12675 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ⊆ ℂ) → (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))))
7064, 11, 69mp2an 422 . . . . . . . . . 10 (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7110, 70eqtri 2160 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})))
7271, 7metcn 12683 . . . . . . . 8 ((((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0})) ∈ (∞Met‘{𝑥 ∈ ℂ ∣ 𝑥 # 0}) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏))))
7366, 64, 72mp2an 422 . . . . . . 7 ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)):{𝑥 ∈ ℂ ∣ 𝑥 # 0}⟶ℂ ∧ ∀𝑎 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}∀𝑏 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ((𝑎((abs ∘ − ) ↾ ({𝑥 ∈ ℂ ∣ 𝑥 # 0} × {𝑥 ∈ ℂ ∣ 𝑥 # 0}))𝑤) < 𝑢 → (((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑎)(abs ∘ − )((𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞))‘𝑤)) < 𝑏)))
7422, 63, 73mpbir2an 926 . . . . . 6 (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽)
7574a1i 9 . . . . 5 (⊤ → (𝑞 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑞)) ∈ (𝐾 Cn 𝐽))
76 oveq2 5782 . . . . 5 (𝑞 = 𝑧 → (1 / 𝑞) = (1 / 𝑧))
779, 14, 16, 14, 75, 76cnmpt21 12460 . . . 4 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (1 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
787mulcncntop 12723 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7978a1i 9 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
809, 14, 15, 77, 79cnmpt22f 12464 . . 3 (⊤ → (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8180mptru 1340 . 2 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 · (1 / 𝑧))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
826, 81eqeltri 2212 1 (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wtru 1332  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071  {cpr 3528   class class class wbr 3929  cmpt 3989   × cxp 4537  cres 4541  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  infcinf 6870  cc 7618  cr 7619  0cc0 7620  1c1 7621   · cmul 7625   < clt 7800  cmin 7933   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769  t crest 12120  ∞Metcxmet 12149  MetOpencmopn 12154  TopOnctopon 12177   Cn ccn 12354   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-cnp 12358  df-tx 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator