ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap GIF version

Theorem reccn2ap 11082
Description: The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2139. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2ap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑦,𝑇,𝑧
Allowed substitution hint:   𝑇(𝑤)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
2 1red 7781 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
3 simp1 981 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simp2 982 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 # 0)
53, 4absrpclapd 10960 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
6 simp3 983 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
75, 6rpmulcld 9500 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
87rpred 9483 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
9 mincl 11002 . . . . . 6 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
102, 8, 9syl2anc 408 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
117rpgt0d 9486 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < ((abs‘𝐴) · 𝐵))
12 0lt1 7889 . . . . . . 7 0 < 1
1311, 12jctil 310 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵)))
14 0red 7767 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
15 ltmininf 11006 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1614, 2, 8, 15syl3anc 1216 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1713, 16mpbird 166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ))
1810, 17elrpd 9481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ+)
195rphalfcld 9496 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
2018, 19rpmulcld 9500 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ∈ ℝ+)
211, 20eqeltrid 2226 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
223adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
23 simprl 520 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
24 breq1 3932 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
2524elrab 2840 . . . . . . . . . . 11 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2623, 25sylib 121 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2726simpld 111 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2822, 27mulcld 7786 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
294adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 # 0)
3026simprd 113 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 # 0)
3122, 27, 29, 30mulap0d 8419 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) # 0)
3222, 27, 28, 31divsubdirapd 8590 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
3322mulid1d 7783 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
3433oveq1d 5789 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
35 1cnd 7782 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
3635, 27, 22, 30, 29divcanap5d 8577 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3734, 36eqtr3d 2174 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3827mulid1d 7783 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3927, 22mulcomd 7787 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
4038, 39oveq12d 5792 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
4135, 22, 27, 29, 30divcanap5d 8577 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
4240, 41eqtr3d 2174 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
4337, 42oveq12d 5792 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
4432, 43eqtrd 2172 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
4544fveq2d 5425 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4622, 27subcld 8073 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4746, 28, 31absdivapd 10967 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4845, 47eqtr3d 2174 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4946abscld 10953 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
5021adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
5150rpred 9483 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
5228abscld 10953 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
536rpred 9483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
5453adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5552, 54remulcld 7796 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
5622, 27abssubd 10965 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
57 simprr 521 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5856, 57eqbrtrd 3950 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
597adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
6059rpred 9483 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
6119adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
6261rpred 9483 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
6360, 62remulcld 7796 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
64 1re 7765 . . . . . . . . . . 11 1 ∈ ℝ
65 min2inf 11004 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6664, 60, 65sylancr 410 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6710adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
6867, 60, 61lemul1d 9527 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵) ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6966, 68mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
701, 69eqbrtrid 3963 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
7127abscld 10953 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
7222abscld 10953 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7372recnd 7794 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
74732halvesd 8965 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7572, 71resubcld 8143 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7627, 22subcld 8073 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
7776abscld 10953 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
7856, 77eqeltrd 2216 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
7922, 27abs2difd 10969 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
80 min1inf 11003 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
8164, 60, 80sylancr 410 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
82 1red 7781 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
8367, 82, 61lemul1d 9527 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1 ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
8481, 83mpbid 146 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
851, 84eqbrtrid 3963 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8662recnd 7794 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8786mulid2d 7784 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8885, 87breqtrd 3954 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8978, 51, 62, 58, 88ltletrd 8185 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
9075, 78, 62, 79, 89lelttrd 7887 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
9172, 71, 62ltsubadd2d 8305 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9290, 91mpbid 146 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9374, 92eqbrtrd 3950 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9462, 71, 62ltadd1d 8300 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9593, 94mpbird 166 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9662, 71, 59, 95ltmul2dd 9540 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9722, 27absmuld 10966 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9897oveq1d 5789 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9971recnd 7794 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
10054recnd 7794 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
10173, 99, 100mul32d 7915 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10298, 101eqtrd 2172 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10396, 102breqtrrd 3956 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10451, 63, 55, 70, 103lelttrd 7887 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10549, 51, 55, 58, 104lttrd 7888 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10628, 31absrpclapd 10960 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10749, 54, 106ltdivmuld 9535 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
108105, 107mpbird 166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10948, 108eqbrtrd 3950 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
110109expr 372 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
111110ralrimiva 2505 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
112 breq2 3933 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
113112rspceaimv 2797 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11421, 111, 113syl2anc 408 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  {cpr 3528   class class class wbr 3929  cfv 5123  (class class class)co 5774  infcinf 6870  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  divcnap  12724  cdivcncfap  12756
  Copyright terms: Public domain W3C validator