ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliunxp GIF version

Theorem eliunxp 4502
Description: Membership in a union of cross products. Analogue of elxp 4389 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 4474 . . . . . 6 Rel ({𝑥} × 𝐵)
21rgenw 2393 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
3 reliun 4485 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
42, 3mpbir 138 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
5 elrel 4469 . . . 4 ((Rel 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 408 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
76pm4.71ri 378 . 2 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
8 nfiu1 3714 . . . 4 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
98nfel2 2206 . . 3 𝑥 𝐶 𝑥𝐴 ({𝑥} × 𝐵)
10919.41 1592 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
11 19.41v 1798 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
12 eleq1 2116 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
13 opeliunxp 4422 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
1412, 13syl6bb 189 . . . . . 6 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
1514pm5.32i 435 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1615exbii 1512 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1711, 16bitr3i 179 . . 3 ((∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1817exbii 1512 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
197, 10, 183bitr2i 201 1 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wral 2323  {csn 3402  cop 3405   ciun 3684   × cxp 4370  Rel wrel 4377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-csb 2880  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-iun 3686  df-opab 3846  df-xp 4378  df-rel 4379
This theorem is referenced by:  raliunxp  4504  rexiunxp  4505  dfmpt3  5048  mpt2mptx  5622
  Copyright terms: Public domain W3C validator