ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm GIF version

Theorem enumctlemm 6999
Description: Lemma for enumct 7000. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f (𝜑𝐹:𝑁onto𝐴)
enumctlemm.n (𝜑𝑁 ∈ ω)
enumctlemm.n0 (𝜑 → ∅ ∈ 𝑁)
enumctlemm.g 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
Assertion
Ref Expression
enumctlemm (𝜑𝐺:ω–onto𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem enumctlemm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7 (𝜑𝐹:𝑁onto𝐴)
2 fof 5345 . . . . . . 7 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
31, 2syl 14 . . . . . 6 (𝜑𝐹:𝑁𝐴)
43ffvelrnda 5555 . . . . 5 ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
54adantlr 468 . . . 4 (((𝜑𝑘 ∈ ω) ∧ 𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
6 enumctlemm.n0 . . . . . 6 (𝜑 → ∅ ∈ 𝑁)
73, 6ffvelrnd 5556 . . . . 5 (𝜑 → (𝐹‘∅) ∈ 𝐴)
87ad2antrr 479 . . . 4 (((𝜑𝑘 ∈ ω) ∧ ¬ 𝑘𝑁) → (𝐹‘∅) ∈ 𝐴)
9 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑘 ∈ ω)
10 enumctlemm.n . . . . . 6 (𝜑𝑁 ∈ ω)
1110adantr 274 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6396 . . . . 5 ((𝑘 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑘𝑁)
139, 11, 12syl2anc 408 . . . 4 ((𝜑𝑘 ∈ ω) → DECID 𝑘𝑁)
145, 8, 13ifcldadc 3501 . . 3 ((𝜑𝑘 ∈ ω) → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) ∈ 𝐴)
15 enumctlemm.g . . 3 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
1614, 15fmptd 5574 . 2 (𝜑𝐺:ω⟶𝐴)
17 foelrn 5654 . . . . . 6 ((𝐹:𝑁onto𝐴𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
181, 17sylan 281 . . . . 5 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
19 eleq1w 2200 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑘𝑁𝑥𝑁))
20 fveq2 5421 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2119, 20ifbieq1d 3494 . . . . . . . . . 10 (𝑘 = 𝑥 → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
22 simpr 109 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑥𝑁)
2310adantr 274 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑁 ∈ ω)
24 elnn 4519 . . . . . . . . . . 11 ((𝑥𝑁𝑁 ∈ ω) → 𝑥 ∈ ω)
2522, 23, 24syl2anc 408 . . . . . . . . . 10 ((𝜑𝑥𝑁) → 𝑥 ∈ ω)
2622iftrued 3481 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) = (𝐹𝑥))
273ffvelrnda 5555 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → (𝐹𝑥) ∈ 𝐴)
2826, 27eqeltrd 2216 . . . . . . . . . 10 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) ∈ 𝐴)
2915, 21, 25, 28fvmptd3 5514 . . . . . . . . 9 ((𝜑𝑥𝑁) → (𝐺𝑥) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
3029, 26eqtrd 2172 . . . . . . . 8 ((𝜑𝑥𝑁) → (𝐺𝑥) = (𝐹𝑥))
3130eqeq2d 2151 . . . . . . 7 ((𝜑𝑥𝑁) → (𝑦 = (𝐺𝑥) ↔ 𝑦 = (𝐹𝑥)))
3231rexbidva 2434 . . . . . 6 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3332adantr 274 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3418, 33mpbird 166 . . . 4 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐺𝑥))
35 omelon 4522 . . . . . . 7 ω ∈ On
3635onelssi 4351 . . . . . 6 (𝑁 ∈ ω → 𝑁 ⊆ ω)
37 ssrexv 3162 . . . . . 6 (𝑁 ⊆ ω → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3810, 36, 373syl 17 . . . . 5 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3938adantr 274 . . . 4 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4034, 39mpd 13 . . 3 ((𝜑𝑦𝐴) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥))
4140ralrimiva 2505 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥))
42 dffo3 5567 . 2 (𝐺:ω–onto𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4316, 41, 42sylanbrc 413 1 (𝜑𝐺:ω–onto𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 819   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  c0 3363  ifcif 3474  cmpt 3989  ωcom 4504  wf 5119  ontowfo 5121  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131
This theorem is referenced by:  enumct  7000
  Copyright terms: Public domain W3C validator