![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expm1t | GIF version |
Description: Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.) |
Ref | Expression |
---|---|
expm1t | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 8191 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | ax-1cn 7208 | . . . . 5 ⊢ 1 ∈ ℂ | |
3 | npcan 7461 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
4 | 1, 2, 3 | sylancl 404 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
5 | 4 | oveq2d 5581 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐴↑((𝑁 − 1) + 1)) = (𝐴↑𝑁)) |
6 | 5 | adantl 271 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑((𝑁 − 1) + 1)) = (𝐴↑𝑁)) |
7 | nnm1nn0 8473 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
8 | expp1 9657 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑((𝑁 − 1) + 1)) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | |
9 | 7, 8 | sylan2 280 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑((𝑁 − 1) + 1)) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
10 | 6, 9 | eqtr3d 2117 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 (class class class)co 5565 ℂcc 7118 1c1 7121 + caddc 7123 · cmul 7125 − cmin 7423 ℕcn 8183 ℕ0cn0 8432 ↑cexp 9649 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7206 ax-resscn 7207 ax-1cn 7208 ax-1re 7209 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-mulrcl 7214 ax-addcom 7215 ax-mulcom 7216 ax-addass 7217 ax-mulass 7218 ax-distr 7219 ax-i2m1 7220 ax-0lt1 7221 ax-1rid 7222 ax-0id 7223 ax-rnegex 7224 ax-precex 7225 ax-cnre 7226 ax-pre-ltirr 7227 ax-pre-ltwlin 7228 ax-pre-lttrn 7229 ax-pre-apti 7230 ax-pre-ltadd 7231 ax-pre-mulgt0 7232 ax-pre-mulext 7233 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2613 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-riota 5521 df-ov 5568 df-oprab 5569 df-mpt2 5570 df-1st 5820 df-2nd 5821 df-recs 5976 df-frec 6062 df-pnf 7294 df-mnf 7295 df-xr 7296 df-ltxr 7297 df-le 7298 df-sub 7425 df-neg 7426 df-reap 7819 df-ap 7826 df-div 7905 df-inn 8184 df-n0 8433 df-z 8510 df-uz 8778 df-iseq 9599 df-iexp 9650 |
This theorem is referenced by: expgt1 9688 resqrexlemcalc3 10128 resqrexlemnm 10130 resqrexlemcvg 10131 iddvdsexp 10452 phiprmpw 10830 |
Copyright terms: Public domain | W3C validator |