ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 GIF version

Theorem resqrexlemcalc3 9842
Description: Lemma for resqrex 9852. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc3
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5205 . . . . . . 7 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5554 . . . . . 6 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32oveq1d 5554 . . . . 5 (𝑤 = 1 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘1)↑2) − 𝐴))
4 oveq1 5546 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
54oveq2d 5555 . . . . . 6 (𝑤 = 1 → (4↑(𝑤 − 1)) = (4↑(1 − 1)))
65oveq2d 5555 . . . . 5 (𝑤 = 1 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(1 − 1))))
73, 6breq12d 3804 . . . 4 (𝑤 = 1 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1)))))
87imbi2d 223 . . 3 (𝑤 = 1 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))))
9 fveq2 5205 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
109oveq1d 5554 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
1110oveq1d 5554 . . . . 5 (𝑤 = 𝑘 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑘)↑2) − 𝐴))
12 oveq1 5546 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1312oveq2d 5555 . . . . . 6 (𝑤 = 𝑘 → (4↑(𝑤 − 1)) = (4↑(𝑘 − 1)))
1413oveq2d 5555 . . . . 5 (𝑤 = 𝑘 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
1511, 14breq12d 3804 . . . 4 (𝑤 = 𝑘 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))))
1615imbi2d 223 . . 3 (𝑤 = 𝑘 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))))
17 fveq2 5205 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1817oveq1d 5554 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1918oveq1d 5554 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘(𝑘 + 1))↑2) − 𝐴))
20 oveq1 5546 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
2120oveq2d 5555 . . . . . 6 (𝑤 = (𝑘 + 1) → (4↑(𝑤 − 1)) = (4↑((𝑘 + 1) − 1)))
2221oveq2d 5555 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
2319, 22breq12d 3804 . . . 4 (𝑤 = (𝑘 + 1) → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
2423imbi2d 223 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
25 fveq2 5205 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2625oveq1d 5554 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
2726oveq1d 5554 . . . . 5 (𝑤 = 𝑁 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑁)↑2) − 𝐴))
28 oveq1 5546 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2928oveq2d 5555 . . . . . 6 (𝑤 = 𝑁 → (4↑(𝑤 − 1)) = (4↑(𝑁 − 1)))
3029oveq2d 5555 . . . . 5 (𝑤 = 𝑁 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
3127, 30breq12d 3804 . . . 4 (𝑤 = 𝑁 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
3231imbi2d 223 . . 3 (𝑤 = 𝑁 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))))
33 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3433renegcld 7449 . . . . . 6 (𝜑 → -𝐴 ∈ ℝ)
35 0red 7085 . . . . . 6 (𝜑 → 0 ∈ ℝ)
36 resqrexlemex.seq . . . . . . . . . 10 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
37 resqrexlemex.agt0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3836, 33, 37resqrexlemf 9833 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ+)
39 1nn 8000 . . . . . . . . . 10 1 ∈ ℕ
4039a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
4138, 40ffvelrnd 5330 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ ℝ+)
4241rpred 8719 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4342resqcld 9574 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ)
4433le0neg2d 7583 . . . . . . 7 (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
4537, 44mpbid 139 . . . . . 6 (𝜑 → -𝐴 ≤ 0)
4634, 35, 43, 45leadd2dd 7624 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) ≤ (((𝐹‘1)↑2) + 0))
4743recnd 7112 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
4833recnd 7112 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4947, 48negsubd 7390 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) = (((𝐹‘1)↑2) − 𝐴))
5047addid1d 7222 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + 0) = ((𝐹‘1)↑2))
5146, 49, 503brtr3d 3820 . . . 4 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ ((𝐹‘1)↑2))
52 1m1e0 8058 . . . . . . . 8 (1 − 1) = 0
5352oveq2i 5550 . . . . . . 7 (4↑(1 − 1)) = (4↑0)
54 4cn 8067 . . . . . . . 8 4 ∈ ℂ
55 exp0 9423 . . . . . . . 8 (4 ∈ ℂ → (4↑0) = 1)
5654, 55ax-mp 7 . . . . . . 7 (4↑0) = 1
5753, 56eqtri 2076 . . . . . 6 (4↑(1 − 1)) = 1
5857oveq2i 5550 . . . . 5 (((𝐹‘1)↑2) / (4↑(1 − 1))) = (((𝐹‘1)↑2) / 1)
5947div1d 7830 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / 1) = ((𝐹‘1)↑2))
6058, 59syl5eq 2100 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(1 − 1))) = ((𝐹‘1)↑2))
6151, 60breqtrrd 3817 . . 3 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))
6238adantr 265 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ+)
63 peano2nn 8001 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6463adantl 266 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
6562, 64ffvelrnd 5330 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
6665rpred 8719 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6766resqcld 9574 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) ∈ ℝ)
6833adantr 265 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
6967, 68resubcld 7450 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7069adantr 265 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7138ffvelrnda 5329 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
7271rpred 8719 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
7372resqcld 9574 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
7473, 68resubcld 7450 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
75 4re 8066 . . . . . . . . . . . 12 4 ∈ ℝ
7675a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
77 4pos 8086 . . . . . . . . . . . 12 0 < 4
7877a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 4)
7976, 78elrpd 8717 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ+)
8074, 79rerpdivcld 8751 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8180adantr 265 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8243adantr 265 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘1)↑2) ∈ ℝ)
83 nnz 8320 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
84 peano2zm 8339 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
8583, 84syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℤ)
8685adantl 266 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
8779, 86rpexpcld 9572 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑(𝑘 − 1)) ∈ ℝ+)
8882, 87rerpdivcld 8751 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
8988, 79rerpdivcld 8751 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9089adantr 265 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9136, 33, 37resqrexlemcalc2 9841 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9291adantr 265 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9374, 88, 79lediv1d 8766 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ↔ ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4)))
9493biimpa 284 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9570, 81, 90, 92, 94letrd 7198 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9647ad2antrr 465 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((𝐹‘1)↑2) ∈ ℂ)
9787adantr 265 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℝ+)
9897rpcnd 8721 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℂ)
9954a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℂ)
10097rpap0d 8725 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) # 0)
10179adantr 265 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℝ+)
102101rpap0d 8725 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 # 0)
10396, 98, 99, 100, 102divdivap1d 7870 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
104 simpr 107 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
105104nncnd 8003 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
106 pncan1 7446 . . . . . . . . . . . . 13 (𝑘 ∈ ℂ → ((𝑘 + 1) − 1) = 𝑘)
107105, 106syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
108107oveq2d 5555 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
109108adantr 265 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
110 simplr 490 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 𝑘 ∈ ℕ)
111 expm1t 9447 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
11254, 110, 111sylancr 399 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
113109, 112eqtrd 2088 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = ((4↑(𝑘 − 1)) · 4))
114113oveq2d 5555 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
115103, 114eqtr4d 2091 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
11695, 115breqtrd 3815 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
117116ex 112 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
118117expcom 113 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
119118a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
1208, 16, 24, 32, 61, 119nnind 8005 . 2 (𝑁 ∈ ℕ → (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
121120impcom 120 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {csn 3402   class class class wbr 3791   × cxp 4370  wf 4925  cfv 4929  (class class class)co 5539  cmpt2 5541  cc 6944  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   · cmul 6951   < clt 7118  cle 7119  cmin 7244  -cneg 7245   / cdiv 7724  cn 7989  2c2 8039  4c4 8041  cz 8301  +crp 8680  seqcseq 9374  cexp 9418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9375  df-iexp 9419
This theorem is referenced by:  resqrexlemnmsq  9843  resqrexlemga  9849
  Copyright terms: Public domain W3C validator