ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni GIF version

Theorem fiuni 6866
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 6862 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 3760 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 eluni 3739 . . . . 5 (𝑥 (fi‘𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
43biimpi 119 . . . 4 (𝑥 (fi‘𝐴) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
54adantl 275 . . 3 ((𝐴𝑉𝑥 (fi‘𝐴)) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
6 simprr 521 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑦 ∈ (fi‘𝐴))
7 elfi2 6860 . . . . . 6 (𝐴𝑉 → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
87ad2antrr 479 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
96, 8mpbid 146 . . . 4 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧)
10 simprr 521 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧)
11 eldifi 3198 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
1211elin1d 3265 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ 𝒫 𝐴)
1312elpwid 3521 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧𝐴)
1413ad2antrl 481 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧𝐴)
15 eldifsni 3652 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ≠ ∅)
1611elin2d 3266 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ Fin)
17 fin0 6779 . . . . . . . . . 10 (𝑧 ∈ Fin → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1816, 17syl 14 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1915, 18mpbid 146 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤𝑧)
2019ad2antrl 481 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → ∃𝑤 𝑤𝑧)
21 intssuni2m 3795 . . . . . . 7 ((𝑧𝐴 ∧ ∃𝑤 𝑤𝑧) → 𝑧 𝐴)
2214, 20, 21syl2anc 408 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧 𝐴)
2310, 22eqsstrd 3133 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 𝐴)
24 simplrl 524 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥𝑦)
2523, 24sseldd 3098 . . . 4 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥 𝐴)
269, 25rexlimddv 2554 . . 3 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑥 𝐴)
275, 26exlimddv 1870 . 2 ((𝐴𝑉𝑥 (fi‘𝐴)) → 𝑥 𝐴)
282, 27eqelssd 3116 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wne 2308  wrex 2417  cdif 3068  cin 3070  wss 3071  c0 3363  𝒫 cpw 3510  {csn 3527   cuni 3736   cint 3771  cfv 5123  Fincfn 6634  ficfi 6856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-fi 6857
This theorem is referenced by:  fipwssg  6867
  Copyright terms: Public domain W3C validator