ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5364
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5073 . . 3 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3429 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5219 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
54funfni 5026 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ V)
63, 5mpan2 409 . . 3 (𝐹 Fn {𝐴} → (𝐹𝐴) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ V)
8 elex 2583 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ V)
98adantr 265 . 2 (((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ V)
10 ffvelrn 5327 . . . . . 6 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
113, 10mpan2 409 . . . . 5 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
12 dffn3 5080 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
1312biimpi 117 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
14 imadmrn 4705 . . . . . . . . . 10 (𝐹 “ dom 𝐹) = ran 𝐹
15 fndm 5025 . . . . . . . . . . 11 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
1615imaeq2d 4695 . . . . . . . . . 10 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
1714, 16syl5eqr 2102 . . . . . . . . 9 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
18 fnsnfv 5259 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
193, 18mpan2 409 . . . . . . . . 9 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
2017, 19eqtr4d 2091 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
21 feq3 5059 . . . . . . . 8 (ran 𝐹 = {(𝐹𝐴)} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2313, 22mpbid 139 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
2511, 24jca 294 . . . 4 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
26 snssi 3535 . . . . 5 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
27 fss 5081 . . . . . 6 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2827ancoms 259 . . . . 5 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2926, 28sylan 271 . . . 4 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
3025, 29impbii 121 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
31 fsng 5363 . . . . 5 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
322, 31mpan 408 . . . 4 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
3332anbi2d 445 . . 3 ((𝐹𝐴) ∈ V → (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
3430, 33syl5bb 185 . 2 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
357, 9, 34pm5.21nii 630 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wcel 1409  Vcvv 2574  wss 2944  {csn 3402  cop 3405  dom cdm 4372  ran crn 4373  cima 4375   Fn wfn 4924  wf 4925  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937
This theorem is referenced by:  fnressn  5376  fressnfv  5377  en1  6309
  Copyright terms: Public domain W3C validator