ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 GIF version

Theorem fsn2 5389
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5097 . . 3 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
2 fsn2.1 . . . . 5 𝐴 ∈ V
32snid 3443 . . . 4 𝐴 ∈ {𝐴}
4 funfvex 5243 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
54funfni 5050 . . . 4 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ V)
63, 5mpan2 416 . . 3 (𝐹 Fn {𝐴} → (𝐹𝐴) ∈ V)
71, 6syl 14 . 2 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ V)
8 elex 2619 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ V)
98adantr 270 . 2 (((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ V)
10 ffvelrn 5352 . . . . . 6 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
113, 10mpan2 416 . . . . 5 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
12 dffn3 5104 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
1312biimpi 118 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
14 imadmrn 4728 . . . . . . . . . 10 (𝐹 “ dom 𝐹) = ran 𝐹
15 fndm 5049 . . . . . . . . . . 11 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
1615imaeq2d 4718 . . . . . . . . . 10 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
1714, 16syl5eqr 2129 . . . . . . . . 9 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
18 fnsnfv 5284 . . . . . . . . . 10 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
193, 18mpan2 416 . . . . . . . . 9 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
2017, 19eqtr4d 2118 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
21 feq3 5083 . . . . . . . 8 (ran 𝐹 = {(𝐹𝐴)} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2220, 21syl 14 . . . . . . 7 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
2313, 22mpbid 145 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
241, 23syl 14 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
2511, 24jca 300 . . . 4 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
26 snssi 3549 . . . . 5 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
27 fss 5105 . . . . . 6 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2827ancoms 264 . . . . 5 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2926, 28sylan 277 . . . 4 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
3025, 29impbii 124 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
31 fsng 5388 . . . . 5 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
322, 31mpan 415 . . . 4 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
3332anbi2d 452 . . 3 ((𝐹𝐴) ∈ V → (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
3430, 33syl5bb 190 . 2 ((𝐹𝐴) ∈ V → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
357, 9, 34pm5.21nii 653 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1285  wcel 1434  Vcvv 2610  wss 2982  {csn 3416  cop 3419  dom cdm 4391  ran crn 4392  cima 4394   Fn wfn 4947  wf 4948  cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960
This theorem is referenced by:  fnressn  5401  fressnfv  5402  en1  6367
  Copyright terms: Public domain W3C validator