ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn GIF version

Theorem fnressn 5376
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem fnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3413 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21reseq2d 4639 . . . . 5 (𝑥 = 𝐵 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
3 fveq2 5205 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4 opeq12 3578 . . . . . . 7 ((𝑥 = 𝐵 ∧ (𝐹𝑥) = (𝐹𝐵)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
53, 4mpdan 406 . . . . . 6 (𝑥 = 𝐵 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
65sneqd 3415 . . . . 5 (𝑥 = 𝐵 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝐵, (𝐹𝐵)⟩})
72, 6eqeq12d 2070 . . . 4 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} ↔ (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
87imbi2d 223 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}) ↔ (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})))
9 vex 2577 . . . . . . 7 𝑥 ∈ V
109snss 3521 . . . . . 6 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
11 fnssres 5039 . . . . . 6 ((𝐹 Fn 𝐴 ∧ {𝑥} ⊆ 𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
1210, 11sylan2b 275 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
13 dffn2 5074 . . . . . . 7 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}):{𝑥}⟶V)
149fsn2 5364 . . . . . . 7 ((𝐹 ↾ {𝑥}):{𝑥}⟶V ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
1513, 14bitri 177 . . . . . 6 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
16 vsnid 3430 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
17 fvres 5225 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1816, 17ax-mp 7 . . . . . . . . . 10 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
1918opeq2i 3580 . . . . . . . . 9 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
2019sneqi 3414 . . . . . . . 8 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
2120eqeq2i 2066 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
22 snssi 3535 . . . . . . . . . 10 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
2322, 11sylan2 274 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
24 funfvex 5219 . . . . . . . . . 10 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom (𝐹 ↾ {𝑥})) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2524funfni 5026 . . . . . . . . 9 (((𝐹 ↾ {𝑥}) Fn {𝑥} ∧ 𝑥 ∈ {𝑥}) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2623, 16, 25sylancl 398 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2726biantrurd 293 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩})))
2821, 27syl5rbbr 188 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
2915, 28syl5bb 185 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
3012, 29mpbid 139 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
3130expcom 113 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
328, 31vtoclga 2636 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
3332impcom 120 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  Vcvv 2574  wss 2944  {csn 3402  cop 3405  cres 4374   Fn wfn 4924  wf 4925  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937
This theorem is referenced by:  fressnfv  5377  dif1en  6367  fseq1p1m1  9057
  Copyright terms: Public domain W3C validator