ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2lem GIF version

Theorem isprm2lem 10705
Description: Lemma for isprm2 10706. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 497 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ≠ 1)
21necomd 2335 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ≠ 𝑃)
3 simpr 108 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜)
4 nnz 8503 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
5 1dvds 10417 . . . . . . . 8 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
64, 5syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 1 ∥ 𝑃)
76ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∥ 𝑃)
8 1nn 8169 . . . . . . 7 1 ∈ ℕ
9 breq1 3808 . . . . . . . 8 (𝑛 = 1 → (𝑛𝑃 ↔ 1 ∥ 𝑃))
109elrab3 2758 . . . . . . 7 (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃))
118, 10ax-mp 7 . . . . . 6 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃)
127, 11sylibr 132 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
13 iddvds 10416 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃𝑃)
144, 13syl 14 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃𝑃)
1514ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃𝑃)
16 breq1 3808 . . . . . . . 8 (𝑛 = 𝑃 → (𝑛𝑃𝑃𝑃))
1716elrab3 2758 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1817ad2antrr 472 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1915, 18mpbird 165 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
20 en2eqpr 6458 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
213, 12, 19, 20syl3anc 1170 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
222, 21mpd 13 . . 3 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃})
2322ex 113 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
24 necom 2333 . . . 4 (1 ≠ 𝑃𝑃 ≠ 1)
25 pr2ne 6572 . . . . . 6 ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
268, 25mpan 415 . . . . 5 (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
2726biimpar 291 . . . 4 ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2𝑜)
2824, 27sylan2br 282 . . 3 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2𝑜)
29 breq1 3808 . . 3 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {1, 𝑃} ≈ 2𝑜))
3028, 29syl5ibrcom 155 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜))
3123, 30impbid 127 1 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wne 2249  {crab 2357  {cpr 3417   class class class wbr 3805  2𝑜c2o 6079  cen 6306  1c1 7096  cn 8158  cz 8484  cdvds 10403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1o 6085  df-2o 6086  df-er 6193  df-en 6309  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-z 8485  df-dvds 10404
This theorem is referenced by:  isprm2  10706
  Copyright terms: Public domain W3C validator