ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn GIF version

Theorem peano5nnnn 7024
Description: Peano's inductive postulate. This is a counterpart to peano5nni 7993 designed for real number axioms which involve natural numbers (notably, axcaucvg 7032). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
peano5nnnn ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5547 . . . 4 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
21eleq1d 2122 . . 3 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑧 + 1) ∈ 𝐴))
32cbvralv 2550 . 2 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴)
4 ax1re 6996 . . . . 5 1 ∈ ℝ
5 elin 3154 . . . . . 6 (1 ∈ (𝐴 ∩ ℝ) ↔ (1 ∈ 𝐴 ∧ 1 ∈ ℝ))
65biimpri 128 . . . . 5 ((1 ∈ 𝐴 ∧ 1 ∈ ℝ) → 1 ∈ (𝐴 ∩ ℝ))
74, 6mpan2 409 . . . 4 (1 ∈ 𝐴 → 1 ∈ (𝐴 ∩ ℝ))
8 inss1 3185 . . . . . 6 (𝐴 ∩ ℝ) ⊆ 𝐴
9 ssralv 3032 . . . . . 6 ((𝐴 ∩ ℝ) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴))
108, 9ax-mp 7 . . . . 5 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴)
11 inss2 3186 . . . . . . . 8 (𝐴 ∩ ℝ) ⊆ ℝ
1211sseli 2969 . . . . . . 7 (𝑦 ∈ (𝐴 ∩ ℝ) → 𝑦 ∈ ℝ)
13 axaddrcl 6999 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
144, 13mpan2 409 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
15 elin 3154 . . . . . . . 8 ((𝑦 + 1) ∈ (𝐴 ∩ ℝ) ↔ ((𝑦 + 1) ∈ 𝐴 ∧ (𝑦 + 1) ∈ ℝ))
1615simplbi2com 1349 . . . . . . 7 ((𝑦 + 1) ∈ ℝ → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1712, 14, 163syl 17 . . . . . 6 (𝑦 ∈ (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝐴 → (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
1817ralimia 2399 . . . . 5 (∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
1910, 18syl 14 . . . 4 (∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴 → ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))
20 axcnex 6993 . . . . . . 7 ℂ ∈ V
21 axresscn 6994 . . . . . . 7 ℝ ⊆ ℂ
2220, 21ssexi 3923 . . . . . 6 ℝ ∈ V
2322inex2 3920 . . . . 5 (𝐴 ∩ ℝ) ∈ V
24 eleq2 2117 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (1 ∈ 𝑥 ↔ 1 ∈ (𝐴 ∩ ℝ)))
25 eleq2 2117 . . . . . . . . 9 (𝑥 = (𝐴 ∩ ℝ) → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2625raleqbi1dv 2530 . . . . . . . 8 (𝑥 = (𝐴 ∩ ℝ) → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)))
2724, 26anbi12d 450 . . . . . . 7 (𝑥 = (𝐴 ∩ ℝ) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
2827elabg 2711 . . . . . 6 ((𝐴 ∩ ℝ) ∈ V → ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ))))
29 nntopi.n . . . . . . 7 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
30 intss1 3658 . . . . . . 7 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ (𝐴 ∩ ℝ))
3129, 30syl5eqss 3017 . . . . . 6 ((𝐴 ∩ ℝ) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → 𝑁 ⊆ (𝐴 ∩ ℝ))
3228, 31syl6bir 157 . . . . 5 ((𝐴 ∩ ℝ) ∈ V → ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ)))
3323, 32ax-mp 7 . . . 4 ((1 ∈ (𝐴 ∩ ℝ) ∧ ∀𝑦 ∈ (𝐴 ∩ ℝ)(𝑦 + 1) ∈ (𝐴 ∩ ℝ)) → 𝑁 ⊆ (𝐴 ∩ ℝ))
347, 19, 33syl2an 277 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁 ⊆ (𝐴 ∩ ℝ))
3534, 8syl6ss 2985 . 2 ((1 ∈ 𝐴 ∧ ∀𝑦𝐴 (𝑦 + 1) ∈ 𝐴) → 𝑁𝐴)
363, 35sylan2br 276 1 ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {cab 2042  wral 2323  Vcvv 2574  cin 2944  wss 2945   cint 3643  (class class class)co 5540  cc 6945  cr 6946  1c1 6948   + caddc 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-enr 6869  df-nr 6870  df-plr 6871  df-0r 6874  df-1r 6875  df-c 6953  df-1 6955  df-r 6957  df-add 6958
This theorem is referenced by:  nnindnn  7025
  Copyright terms: Public domain W3C validator