ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu GIF version

Theorem preqlu 7280
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7279 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3093 . . . 4 (𝐴P𝐴 ∈ (𝒫 Q × 𝒫 Q))
3 1st2nd2 6073 . . . 4 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
42, 3syl 14 . . 3 (𝐴P𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
51sseli 3093 . . . 4 (𝐵P𝐵 ∈ (𝒫 Q × 𝒫 Q))
6 1st2nd2 6073 . . . 4 (𝐵 ∈ (𝒫 Q × 𝒫 Q) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
75, 6syl 14 . . 3 (𝐵P𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
84, 7eqeqan12d 2155 . 2 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
9 xp1st 6063 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st𝐴) ∈ 𝒫 Q)
102, 9syl 14 . . . 4 (𝐴P → (1st𝐴) ∈ 𝒫 Q)
11 xp2nd 6064 . . . . 5 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd𝐴) ∈ 𝒫 Q)
122, 11syl 14 . . . 4 (𝐴P → (2nd𝐴) ∈ 𝒫 Q)
13 opthg 4160 . . . 4 (((1st𝐴) ∈ 𝒫 Q ∧ (2nd𝐴) ∈ 𝒫 Q) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1410, 12, 13syl2anc 408 . . 3 (𝐴P → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
1514adantr 274 . 2 ((𝐴P𝐵P) → (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
168, 15bitrd 187 1 ((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  𝒫 cpw 3510  cop 3530   × cxp 4537  cfv 5123  1st c1st 6036  2nd c2nd 6037  Qcnq 7088  Pcnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-1st 6038  df-2nd 6039  df-inp 7274
This theorem is referenced by:  genpassg  7334  addnqpr  7369  mulnqpr  7385  distrprg  7396  1idpr  7400  ltexpri  7421  addcanprg  7424  recexprlemex  7445  aptipr  7449
  Copyright terms: Public domain W3C validator