ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq GIF version

Theorem recvguniq 10082
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f (𝜑𝐹:ℕ⟶ℝ)
recvguniq.lre (𝜑𝐿 ∈ ℝ)
recvguniq.l (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
recvguniq.mre (𝜑𝑀 ∈ ℝ)
recvguniq.m (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
Assertion
Ref Expression
recvguniq (𝜑𝐿 = 𝑀)
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝐿,𝑘,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑘)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5 (𝜑𝐿 ∈ ℝ)
2 recvguniq.mre . . . . 5 (𝜑𝑀 ∈ ℝ)
3 reaplt 7807 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
41, 2, 3syl2anc 403 . . . 4 (𝜑 → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
5 simpr 108 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
61adantr 270 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
72adantr 270 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
8 difrp 8903 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
96, 7, 8syl2anc 403 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
105, 9mpbid 145 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿) ∈ ℝ+)
1110rphalfcld 8919 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ((𝑀𝐿) / 2) ∈ ℝ+)
12 recvguniq.l . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
13 recvguniq.m . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
14 r19.26 2490 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1512, 13, 14sylanbrc 408 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
16 nnuz 8787 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1716rexanuz2 10078 . . . . . . . . . . . 12 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1817ralbii 2377 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1915, 18sylibr 132 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2016r19.2uz 10080 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2120ralimi 2431 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2219, 21syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2322adantr 270 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
24 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝑀𝐿) / 2)))
2524breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2))))
26 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝑀𝐿) / 2)))
2726breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
2825, 27anbi12d 457 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
29 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝑀𝐿) / 2)))
3029breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2))))
3126breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
3230, 31anbi12d 457 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
3328, 32anbi12d 457 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3433rexbidv 2374 . . . . . . . . 9 (𝑥 = ((𝑀𝐿) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3534rspcv 2706 . . . . . . . 8 (((𝑀𝐿) / 2) ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3611, 23, 35sylc 61 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
37 recvguniq.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3837ad2antrr 472 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐹:ℕ⟶ℝ)
392ad2antrr 472 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 ∈ ℝ)
401ad2antrr 472 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐿 ∈ ℝ)
41 simprl 498 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑘 ∈ ℕ)
42 simprrr 507 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
4342adantl 271 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
44 simprll 504 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4544adantl 271 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4638, 39, 40, 41, 43, 45recvguniqlem 10081 . . . . . . 7 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → ⊥)
4736, 46rexlimddv 2486 . . . . . 6 ((𝜑𝐿 < 𝑀) → ⊥)
4847ex 113 . . . . 5 (𝜑 → (𝐿 < 𝑀 → ⊥))
49 difrp 8903 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
502, 1, 49syl2anc 403 . . . . . . . . . 10 (𝜑 → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
5150biimpa 290 . . . . . . . . 9 ((𝜑𝑀 < 𝐿) → (𝐿𝑀) ∈ ℝ+)
5251rphalfcld 8919 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ((𝐿𝑀) / 2) ∈ ℝ+)
5322adantr 270 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
54 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝐿𝑀) / 2)))
5554breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2))))
56 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝐿𝑀) / 2)))
5756breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5855, 57anbi12d 457 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
59 oveq2 5571 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝐿𝑀) / 2)))
6059breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2))))
6156breq2d 3817 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
6260, 61anbi12d 457 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6358, 62anbi12d 457 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6463rexbidv 2374 . . . . . . . . 9 (𝑥 = ((𝐿𝑀) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6564rspcv 2706 . . . . . . . 8 (((𝐿𝑀) / 2) ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6652, 53, 65sylc 61 . . . . . . 7 ((𝜑𝑀 < 𝐿) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6737ad2antrr 472 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐹:ℕ⟶ℝ)
681ad2antrr 472 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 ∈ ℝ)
692ad2antrr 472 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑀 ∈ ℝ)
70 simprl 498 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑘 ∈ ℕ)
71 simprlr 505 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
7271adantl 271 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
73 simprrl 506 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7473adantl 271 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7567, 68, 69, 70, 72, 74recvguniqlem 10081 . . . . . . 7 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → ⊥)
7666, 75rexlimddv 2486 . . . . . 6 ((𝜑𝑀 < 𝐿) → ⊥)
7776ex 113 . . . . 5 (𝜑 → (𝑀 < 𝐿 → ⊥))
7848, 77jaod 670 . . . 4 (𝜑 → ((𝐿 < 𝑀𝑀 < 𝐿) → ⊥))
794, 78sylbid 148 . . 3 (𝜑 → (𝐿 # 𝑀 → ⊥))
80 dfnot 1303 . . 3 𝐿 # 𝑀 ↔ (𝐿 # 𝑀 → ⊥))
8179, 80sylibr 132 . 2 (𝜑 → ¬ 𝐿 # 𝑀)
821recnd 7261 . . 3 (𝜑𝐿 ∈ ℂ)
832recnd 7261 . . 3 (𝜑𝑀 ∈ ℂ)
84 apti 7841 . . 3 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8582, 83, 84syl2anc 403 . 2 (𝜑 → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8681, 85mpbird 165 1 (𝜑𝐿 = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wfal 1290  wcel 1434  wral 2353  wrex 2354   class class class wbr 3805  wf 4948  cfv 4952  (class class class)co 5563  cc 7093  cr 7094  1c1 7096   + caddc 7098   < clt 7267  cmin 7398   # cap 7800   / cdiv 7879  cn 8158  2c2 8208  cuz 8752  +crp 8867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868
This theorem is referenced by:  resqrexlemsqa  10111
  Copyright terms: Public domain W3C validator