ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa GIF version

Theorem resqrexlemsqa 10796
Description: Lemma for resqrex 10798. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemsqa (𝜑 → (𝐿↑2) = 𝐴)
Distinct variable groups:   𝐴,𝑒,𝑗   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗   𝑦,𝐹,𝑧   𝑖,𝐹   𝑒,𝐿,𝑗,𝑖   𝑦,𝐿,𝑧   𝑒,𝑖,𝑗   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑖)

Proof of Theorem resqrexlemsqa
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10779 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
54ffvelrnda 5555 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℝ+)
6 2z 9082 . . . . . 6 2 ∈ ℤ
76a1i 9 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 2 ∈ ℤ)
85, 7rpexpcld 10448 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥)↑2) ∈ ℝ+)
9 eqid 2139 . . . 4 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)) = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
108, 9fmptd 5574 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ+)
11 rpssre 9452 . . . 4 + ⊆ ℝ
1211a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
1310, 12fssd 5285 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ)
14 resqrexlemgt0.rr . . 3 (𝜑𝐿 ∈ ℝ)
1514resqcld 10450 . 2 (𝜑 → (𝐿↑2) ∈ ℝ)
16 resqrexlemgt0.lim . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
17 oveq2 5782 . . . . . . . . 9 (𝑒 = 𝑎 → (𝐿 + 𝑒) = (𝐿 + 𝑎))
1817breq2d 3941 . . . . . . . 8 (𝑒 = 𝑎 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + 𝑎)))
19 oveq2 5782 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + 𝑎))
2019breq2d 3941 . . . . . . . 8 (𝑒 = 𝑎 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + 𝑎)))
2118, 20anbi12d 464 . . . . . . 7 (𝑒 = 𝑎 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2221rexralbidv 2461 . . . . . 6 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2322cbvralv 2654 . . . . 5 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
24 fveq2 5421 . . . . . . . 8 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2524raleqdv 2632 . . . . . . 7 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2625cbvrexv 2655 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
2726ralbii 2441 . . . . 5 (∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
28 fveq2 5421 . . . . . . . . . 10 (𝑖 = 𝑐 → (𝐹𝑖) = (𝐹𝑐))
2928breq1d 3939 . . . . . . . . 9 (𝑖 = 𝑐 → ((𝐹𝑖) < (𝐿 + 𝑎) ↔ (𝐹𝑐) < (𝐿 + 𝑎)))
3028oveq1d 5789 . . . . . . . . . 10 (𝑖 = 𝑐 → ((𝐹𝑖) + 𝑎) = ((𝐹𝑐) + 𝑎))
3130breq2d 3941 . . . . . . . . 9 (𝑖 = 𝑐 → (𝐿 < ((𝐹𝑖) + 𝑎) ↔ 𝐿 < ((𝐹𝑐) + 𝑎)))
3229, 31anbi12d 464 . . . . . . . 8 (𝑖 = 𝑐 → (((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎))))
3332cbvralv 2654 . . . . . . 7 (∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3433rexbii 2442 . . . . . 6 (∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3534ralbii 2441 . . . . 5 (∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3623, 27, 353bitri 205 . . . 4 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3716, 36sylib 121 . . 3 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
381, 2, 3, 14, 37, 9resqrexlemglsq 10794 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < ((𝐿↑2) + 𝑎) ∧ (𝐿↑2) < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
391, 2, 3, 14, 37, 9resqrexlemga 10795 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < (𝐴 + 𝑎) ∧ 𝐴 < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
4013, 15, 38, 2, 39recvguniq 10767 1 (𝜑 → (𝐿↑2) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  {csn 3527   class class class wbr 3929  cmpt 3989   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   < clt 7800  cle 7801   / cdiv 8432  cn 8720  2c2 8771  cz 9054  cuz 9326  +crp 9441  seqcseq 10218  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemex  10797
  Copyright terms: Public domain W3C validator