ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remullem GIF version

Theorem remullem 9896
Description: Lemma for remul 9897, immul 9904, and cjmul 9910. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))

Proof of Theorem remullem
StepHypRef Expression
1 replim 9884 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2 replim 9884 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
31, 2oveqan12d 5562 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
4 recl 9878 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54adantr 270 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65recnd 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
7 ax-icn 7133 . . . . . . . 8 i ∈ ℂ
8 imcl 9879 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98adantr 270 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
109recnd 7209 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
11 mulcl 7162 . . . . . . . 8 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
127, 10, 11sylancr 405 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
136, 12addcld 7200 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
14 recl 9878 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514adantl 271 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1615recnd 7209 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
17 imcl 9879 . . . . . . . . 9 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1817adantl 271 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1918recnd 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
20 mulcl 7162 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
217, 19, 20sylancr 405 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2213, 16, 21adddid 7205 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))))
236, 12, 16adddird 7206 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
246, 12, 21adddird 7206 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
2523, 24oveq12d 5561 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
265, 15remulcld 7211 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
2726recnd 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2812, 21mulcld 7201 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) ∈ ℂ)
2912, 16mulcld 7201 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) ∈ ℂ)
306, 21mulcld 7201 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) ∈ ℂ)
3127, 28, 29, 30add42d 7345 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
327a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
3332, 10, 32, 19mul4d 7330 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))))
34 ixi 7750 . . . . . . . . . . . 12 (i · i) = -1
3534oveq1i 5553 . . . . . . . . . . 11 ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵)))
369, 18remulcld 7211 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
3736recnd 7209 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
3837mulm1d 7581 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
3935, 38syl5eq 2126 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4033, 39eqtrd 2114 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4140oveq2d 5559 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))))
4227, 37negsubd 7492 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4341, 42eqtrd 2114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
449, 15remulcld 7211 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
4544recnd 7209 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
46 mulcl 7162 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
477, 45, 46sylancr 405 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
485, 18remulcld 7211 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
4948recnd 7209 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
50 mulcl 7162 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
517, 49, 50sylancr 405 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
5247, 51addcomd 7326 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5332, 10, 16mulassd 7204 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) = (i · ((ℑ‘𝐴) · (ℜ‘𝐵))))
546, 32, 19mul12d 7327 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) = (i · ((ℜ‘𝐴) · (ℑ‘𝐵))))
5553, 54oveq12d 5561 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))))
5632, 49, 45adddid 7205 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5752, 55, 563eqtr4d 2124 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5843, 57oveq12d 5561 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
5925, 31, 583eqtr2d 2120 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
603, 22, 593eqtrd 2118 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
6160fveq2d 5213 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
6226, 36resubcld 7552 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ)
6348, 44readdcld 7210 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ)
64 crre 9882 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6562, 63, 64syl2anc 403 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6661, 65eqtrd 2114 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6760fveq2d 5213 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
68 crim 9883 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
6962, 63, 68syl2anc 403 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
7067, 69eqtrd 2114 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
71 mulcl 7162 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
72 remim 9885 . . . 4 ((𝐴 · 𝐵) ∈ ℂ → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
7371, 72syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
74 remim 9885 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
75 remim 9885 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
7674, 75oveqan12d 5562 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
7716, 21subcld 7486 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵) − (i · (ℑ‘𝐵))) ∈ ℂ)
786, 12, 77subdird 7586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))))
7927, 30, 29, 28subadd4d 7534 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
806, 16, 21subdid 7585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))))
8112, 16, 21subdid 7585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8280, 81oveq12d 5561 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
8365, 61, 433eqtr4d 2124 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8470oveq2d 5559 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8554, 53oveq12d 5561 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8656, 84, 853eqtr4d 2124 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
8783, 86oveq12d 5561 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
8879, 82, 873eqtr4d 2124 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
8976, 78, 883eqtrd 2118 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
9073, 89eqtr4d 2117 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
9166, 70, 903jca 1119 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  cfv 4932  (class class class)co 5543  cc 7041  cr 7042  1c1 7044  ici 7045   + caddc 7046   · cmul 7048  cmin 7346  -cneg 7347  ccj 9864  cre 9865  cim 9866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-2 8165  df-cj 9867  df-re 9868  df-im 9869
This theorem is referenced by:  remul  9897  immul  9904  cjmul  9910
  Copyright terms: Public domain W3C validator