ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexfiuz GIF version

Theorem rexfiuz 9816
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑘,𝑛,𝐴   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘,𝑛)

Proof of Theorem rexfiuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2522 . . . 4 (𝑥 = ∅ → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ ∅ 𝜑))
21rexralbidv 2367 . . 3 (𝑥 = ∅ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑))
3 raleq 2522 . . 3 (𝑥 = ∅ → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
42, 3bibi12d 228 . 2 (𝑥 = ∅ → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
5 raleq 2522 . . . 4 (𝑥 = 𝑦 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑦 𝜑))
65rexralbidv 2367 . . 3 (𝑥 = 𝑦 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑))
7 raleq 2522 . . 3 (𝑥 = 𝑦 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
86, 7bibi12d 228 . 2 (𝑥 = 𝑦 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
9 raleq 2522 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
109rexralbidv 2367 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
11 raleq 2522 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1210, 11bibi12d 228 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
13 raleq 2522 . . . 4 (𝑥 = 𝐴 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝐴 𝜑))
1413rexralbidv 2367 . . 3 (𝑥 = 𝐴 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑))
15 raleq 2522 . . 3 (𝑥 = 𝐴 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1614, 15bibi12d 228 . 2 (𝑥 = 𝐴 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
17 0z 8313 . . . . 5 0 ∈ ℤ
18 elex2 2587 . . . . 5 (0 ∈ ℤ → ∃𝑗 𝑗 ∈ ℤ)
1917, 18ax-mp 7 . . . 4 𝑗 𝑗 ∈ ℤ
20 ral0 3350 . . . . 5 𝑛 ∈ ∅ 𝜑
2120rgen2w 2394 . . . 4 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
22 r19.2m 3337 . . . 4 ((∃𝑗 𝑗 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑)
2319, 21, 22mp2an 410 . . 3 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
24 ral0 3350 . . 3 𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑
2523, 242th 167 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
26 anbi1 447 . . . 4 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
27 rexanuz 9815 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
28 ralunb 3152 . . . . . . 7 (∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
2928ralbii 2347 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
3029rexbii 2348 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
31 vex 2577 . . . . . . 7 𝑧 ∈ V
32 ralsnsg 3435 . . . . . . . 8 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
33 ralcom 2490 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑)
34 ralsnsg 3435 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3533, 34syl5bb 185 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3635rexbidv 2344 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
37 sbcrex 2865 . . . . . . . . 9 ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑)
3836, 37syl6rbbr 192 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
3932, 38bitrd 181 . . . . . . 7 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
4031, 39ax-mp 7 . . . . . 6 (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑)
4140anbi2i 438 . . . . 5 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
4227, 30, 413bitr4i 205 . . . 4 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
43 ralunb 3152 . . . 4 (∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4426, 42, 433bitr4g 216 . . 3 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4544a1i 9 . 2 (𝑦 ∈ Fin → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
464, 8, 12, 16, 25, 45findcard2 6377 1 (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wral 2323  wrex 2324  Vcvv 2574  [wsbc 2787  cun 2943  c0 3252  {csn 3403  cfv 4930  Fincfn 6252  0cc0 6947  cz 8302  cuz 8569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-en 6253  df-fin 6255  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator